1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
//! Intermediate Representation ([IR]) legalized (semantically analyzed) from [SyntaxTree]
//!
//! Legalize procedure consists of three steps:
//!
//! - Create [Namespace]
//! - Resolve SubType/SuperType consists to yield [Constraints]
//! - [Legalize] each AST portions
//!
//! First two step are global analysis, which make the last step local.
//!
//! Namespace creation
//! -------------------
//! Legalize phase starts with [Namespace] creation.
//! This step also introduces [Scope] and [Path] to represent scopes and names in EXPRESS schema.
//! Using [Namespace], we can look up corresponding [Path] to a local identifier appears in a [Scope].
//!
//! ```text
//! SCHEMA sc1; -- Scope "sc1[schema]" starts
//! ENTITY a; -- Path "sc1[schema].a[entity]" is registered
//! x: REAL;
//! y: REAL;
//! END_ENTITY;
//!
//! ENTITY b; -- Path "sc1[schema].b[entity]" is registered
//! z: REAL;
//! a: a; -- Identifier "a" is resolved as a path "sc1[schema].a[entity]"
//! END_ENTITY;
//! END_SCHEMA; -- Scope "sc1[schema]" ends
//! ```
//!
//! SubType/SuperType constraints
//! ------------------------------
//! ENTITY may have subtype or supertype constraints.
//!
//! ```text
//! ENTITY person;
//! name: STRING;
//! END_ENTITY;
//!
//! ENTITY employee SUBTYPE OF (person);
//! pay: INTEGER;
//! END_ENTITY;
//!
//! ENTITY student SUBTYPE OF (person);
//! school_name: STRING;
//! END_ENTITY;
//! ```
//!
//! This means `employee` has a field `pay` in addition to `name` inherited from `person`,
//! and an `employee` can be instantiated as a `person`.
//! Instances which contains two or more entity value are called "complex entity instance",
//! and they are mapped into exchange structures using one of two rules,
//! "internal mapping" or "external mapping":
//!
//! ```text
//! /* internal mapping */
//! #1 = EMPLOYEE('Hitori Goto', 10);
//! #2 = STUDENT('Ikuno Kita', 'Shuka');
//!
//! /* external mapping */
//! #3 = (PERSON('Hitori Goto') EMPLOYEE(10));
//! #4 = (PERSON('Ikuno Kita') STUDENT('Shuka));
//! #5 = (PERSON('Nizika Iziti') EMPLOYEE(15) STUDENT('Simokitazawa'))
//! ```
//!
//! Using internal mapping,
//! the inherited attributes (`name`) shall appear sequentially
//! prior to the explicit attributes (`pay`, `school_name`).
//! Using external mapping, an instance is represented by a list of
//! "partial complex entity value" enclosed by `()`.
//! The instances `#1` (`#2`) described by internal mapping
//! and `#3` (`#4`) described by external mapping are same value of `employee` (`student`) entity,
//! but internal mapping cannot describe `#5` case.
//! Different from usual Object-Oriented Programming (OOP) languages like C++ or Python,
//! `person` can be both `employee` and `student` simultaneously,
//! i.e. a `person` object may have both `pay` field and `school_name` field like as `#5`.
//!
//! This type of inheritance is called `ANDOR` in EXPRESS,
//! and it is the default constraint for supertype.
//! We can write this constraint explicitly in the entity declaration of `person`:
//!
//! ```text
//! ENTITY person SUPERTYPE OF (employee ANDOR student);
//! name: STRING;
//! END_ENTITY;
//! ```
//!
//! or as a separate `SUBTYPE_CONSTRAINT` declaration:
//!
//! ```text
//! SUBTYPE_CONSTRAINT person_prop FOR person;
//! employee ANDOR student;
//! END_SUBTYPE_CONSTRAINT;
//! ```
//!
//! We cannot determine the subtypes of an entity from its `ENTITY` declaration
//! due to default constraints.
//! `SUBTYPE OF` relation are gathered into [Constraints] struct
//! to look up subtype paths from supertype path before legalizing AST of entities.
//!
//! There is two other types of constraints. First is `ONEOF` constraint:
//!
//! ```text
//! ENTITY pet;
//! name : pet_name;
//! END_ENTITY;
//!
//! SUBTYPE_CONSTRAINT separate_species FOR pet;
//! ABSTRACT SUPERTYPE;
//! ONEOF(cat, rabbit, dog);
//! END_SUBTYPE_CONSTRAINT;
//!
//! ENTITY cat SUBTYPE OF (pet);
//! END_ENTITY;
//!
//! ENTITY rabbit SUBTYPE OF (pet);
//! END_ENTITY;
//!
//! ENTITY dog SUBTYPE OF (pet);
//! END_ENTITY;
//! ```
//!
//! You know a pet cannot be both cat and rabbit in real world.
//! This is represented by `ONEOF` constraint in `SUBTYPE_CONSTRAINT` declaration.
//! Second is `AND` constraint:
//!
//! ```text
//! ENTITY person;
//! END_ENTITY;
//!
//! ENTITY male SUBTYPE OF (person);
//! END_ENTITY;
//!
//! ENTITY female SUBTYPE OF (person);
//! END_ENTITY;
//!
//! ENTITY citizen SUBTYPE OF (person);
//! END_ENTITY;
//!
//! ENTITY alien SUBTYPE OF (person);
//! END_ENTITY;
//!
//! SUBTYPE_CONSTRAINT person_prop FOR person;
//! ONEOF(male, female) AND ONEOF(citizen, alien);
//! END_SUBTYPE_CONSTRAINT;
//! ```
//!
//! `AND` behaves as that for boolean.
//!
//! [Legalize] trait
//! -----------------
//! Most of structs in this sub-module implements [Legalize] trait
//! for creating it from a corresponding AST portion.
//! `Legalize::legalize` is called recursively while traversing AST.
//! These structs, called IRs (intermediate representations), are designed with
//! following rules:
//!
//! - Code generation only looks IRs, never looks AST.
//! Every information required for code generation must be contained in IR.
//! - Code generation does not execute global analysis,
//! e.g. check if a type reference refers a primitive type or not.
//!
//! This crate is motivated for generating Rust code,
//! but is designed to use for generating other contents,
//! e.g. Python code or HTML reference.
//!
mod complex_entity;
mod constraints;
mod entity;
mod namespace;
mod schema;
mod scope;
mod type_decl;
mod type_ref;
pub use complex_entity::*;
pub use constraints::*;
pub use entity::*;
pub use namespace::*;
pub use schema::*;
pub use scope::*;
pub use type_decl::*;
pub use type_ref::*;
use crate::ast::SyntaxTree;
use thiserror::Error;
/// Semantic errors
#[derive(Debug, Error)]
pub enum SemanticError {
#[error("Not found the Type {name} referred in scope {scope}")]
TypeNotFound { name: String, scope: Scope },
#[error("Invalid path: {0}")]
InvalidPath(Path),
#[error("Same item ({0}) is declared multiple times")]
DuplicatedDeclaration(Path),
}
/// Legalize partial AST input into corresponding intermediate representation
pub trait Legalize: Sized {
/// AST portion
type Input;
fn legalize(
namespace: &Namespace,
constraints: &Constraints,
scope: &Scope,
input: &Self::Input,
) -> Result<Self, SemanticError>;
}
/// Intermediate Representation
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct IR {
pub schemas: Vec<Schema>,
}
impl IR {
pub fn from_syntax_tree(st: &SyntaxTree) -> Result<Self, SemanticError> {
let ns = Namespace::new(st);
let ss = Constraints::new(&ns, st)?;
let ir = Self::legalize(&ns, &ss, &Scope::root(), st)?;
Ok(ir)
}
}
impl Legalize for IR {
type Input = SyntaxTree;
fn legalize(
ns: &Namespace,
ss: &Constraints,
scope: &Scope,
syn: &SyntaxTree,
) -> Result<Self, SemanticError> {
let schemas = syn
.schemas
.iter()
.map(|schema| Schema::legalize(ns, ss, scope, schema))
.collect::<Result<Vec<Schema>, SemanticError>>()?;
Ok(IR { schemas })
}
}