monolish  0.17.3-dev.23
MONOlithic LInear equation Solvers for Highly-parallel architecture
monolish_dense.hpp
Go to the documentation of this file.
1 #pragma once
2 #include "monolish_matrix.hpp"
3 #include "monolish_tensor.hpp"
4 #include <iostream>
5 #include <memory>
6 
7 namespace monolish {
8 template <typename Float> class vector;
9 template <typename TYPE, typename Float> class view1D;
10 template <typename TYPE, typename Float> class view_Dense;
11 template <typename TYPE, typename Float> class view_tensor_Dense;
12 
13 namespace tensor {
14 template <typename Float> class tensor_Dense;
15 }
16 
17 namespace matrix {
18 
30 template <typename Float> class Dense {
31 private:
35  size_t rowN;
36 
40  size_t colN;
41 
45  // size_t nnz;
46 
50  mutable std::shared_ptr<bool> gpu_status = std::make_shared<bool>(false);
51 
55  size_t first = 0;
56 
57 public:
61  std::shared_ptr<Float> val;
62 
66  size_t val_nnz = 0;
67 
71  size_t alloc_nnz = 0;
72 
76  bool val_create_flag = false;
77 
78  Dense() { val_create_flag = true; }
79 
88  void convert(const COO<Float> &coo);
89 
98  void convert(const Dense<Float> &dense);
99 
108  Dense(const COO<Float> &coo) {
109  val_create_flag = true;
110  convert(coo);
111  }
112 
125  Dense(const Dense<Float> &dense);
126 
140  Dense(const Dense<Float> &dense, Float value);
141 
154  Dense(const view_Dense<vector<Float>, Float> &dense);
155 
168  Dense(const view_Dense<matrix::Dense<Float>, Float> &dense);
169 
183 
193  Dense(const size_t M, const size_t N);
194 
205  Dense(const size_t M, const size_t N, const Float *value);
206 
217  Dense(const size_t M, const size_t N, const std::vector<Float> &value);
218 
229  Dense(const size_t M, const size_t N, const vector<Float> &value);
230 
241  Dense(const size_t M, const size_t N,
242  const std::initializer_list<Float> &list);
243 
256  Dense(const size_t M, const size_t N, const Float min, const Float max);
257 
270  Dense(const size_t M, const size_t N, const Float min, const Float max,
271  const std::uint32_t seed);
272 
283  Dense(const size_t M, const size_t N, const Float value);
284 
295  void set_ptr(const size_t M, const size_t N, const std::vector<Float> &value);
296 
307  void set_ptr(const size_t M, const size_t N, const Float *value);
308 
319  void set_ptr(const size_t M, const size_t N, const Float value);
320 
328  [[nodiscard]] size_t get_row() const { return rowN; }
329 
337  [[nodiscard]] size_t get_col() const { return colN; }
338 
346  [[nodiscard]] std::shared_ptr<Float> get_val() { return val; }
347 
355  [[nodiscard]] size_t get_nnz() const { return val_nnz; }
356 
364  [[nodiscard]] size_t get_alloc_nnz() const { return alloc_nnz; }
365 
372  [[nodiscard]] size_t get_first() const { return first; }
373 
380  [[nodiscard]] size_t get_offset() const { return get_first(); }
381 
389  void set_row(const size_t N) { rowN = N; };
390 
398  void set_col(const size_t M) { colN = M; };
399 
407  // void set_nnz(const size_t NZ) { val_nnz = NZ; };
408 
414  void set_first(size_t i) { first = i; }
415 
423  [[nodiscard]] std::string type() const { return "Dense"; }
424 
435  void transpose();
436 
445  void transpose(const Dense &B);
446 
454  [[nodiscard]] double get_data_size() const {
455  return get_nnz() * sizeof(Float) / 1.0e+9;
456  }
457 
467  [[nodiscard]] Float at(const size_t i) const;
468 
479  [[nodiscard]] Float at(const size_t i, const size_t j) const;
480 
490  [[nodiscard]] Float at(const size_t i) {
491  return static_cast<const Dense *>(this)->at(i);
492  };
493 
504  [[nodiscard]] Float at(const size_t i, const size_t j) {
505  return static_cast<const Dense *>(this)->at(i, j);
506  };
507 
517  void insert(const size_t i, const Float Val);
518 
529  void insert(const size_t i, const size_t j, const Float Val);
530 
539  void print_all(bool force_cpu = false) const;
540 
541  // communication
542  // ///////////////////////////////////////////////////////////////////////////
550  void send() const;
551 
559  void recv();
560 
568  void nonfree_recv();
569 
577  void device_free() const;
578 
583  [[nodiscard]] bool get_device_mem_stat() const { return *gpu_status; }
584 
589  [[nodiscard]] std::shared_ptr<bool> get_gpu_status() const {
590  return gpu_status;
591  }
592 
600  ~Dense() {
601  if (val_create_flag) {
602  if (get_device_mem_stat()) {
603  device_free();
604  }
605  }
606  }
607 
614  [[nodiscard]] const Float *data() const { return val.get(); }
615 
622  [[nodiscard]] Float *data() { return val.get(); }
623 
632  void resize(size_t N, Float Val = 0) {
633  if (first + N < alloc_nnz) {
634  for (size_t i = val_nnz; i < N; ++i) {
635  begin()[i] = Val;
636  }
637  val_nnz = N;
638  return;
639  }
640  if (get_device_mem_stat()) {
641  throw std::runtime_error("Error, GPU matrix cant use resize");
642  }
643  if (val_create_flag) {
644  std::shared_ptr<Float> tmp(new Float[N], std::default_delete<Float[]>());
645  size_t copy_size = std::min(val_nnz, N);
646  for (size_t i = 0; i < copy_size; ++i) {
647  tmp.get()[i] = data()[i];
648  }
649  for (size_t i = copy_size; i < N; ++i) {
650  tmp.get()[i] = Val;
651  }
652  val = tmp;
653  alloc_nnz = N;
654  val_nnz = N;
655  first = 0;
656  } else {
657  throw std::runtime_error("Error, not create vector cant use resize");
658  }
659  }
660 
661  void move(const tensor::tensor_Dense<Float> &tensor_dense);
662 
663  void move(const tensor::tensor_Dense<Float> &tensor_dense, int rowN,
664  int colN);
665 
666  void move(const view_tensor_Dense<vector<Float>, Float> &tensor_dense);
667 
668  void move(const view_tensor_Dense<matrix::Dense<Float>, Float> &tensor_dense);
669 
671  &tensor_dense);
672 
673  void move(const view_tensor_Dense<vector<Float>, Float> &tensor_dense,
674  int rowN, int colN);
675 
676  void move(const view_tensor_Dense<matrix::Dense<Float>, Float> &tensor_dense,
677  int rowN, int colN);
678 
679  void move(
680  const view_tensor_Dense<tensor::tensor_Dense<Float>, Float> &tensor_dense,
681  int rowN, int colN);
682 
689  [[nodiscard]] const Float *begin() const { return data() + get_offset(); }
690 
697  [[nodiscard]] Float *begin() { return data() + get_offset(); }
698 
705  [[nodiscard]] const Float *end() const {
706  return data() + get_offset() + get_nnz();
707  }
708 
715  [[nodiscard]] Float *end() { return data() + get_offset() + get_nnz(); }
716 
718 
726  void diag(vector<Float> &vec) const;
727  void diag(view1D<vector<Float>, Float> &vec) const;
728  void diag(view1D<matrix::Dense<Float>, Float> &vec) const;
729  void diag(view1D<tensor::tensor_Dense<Float>, Float> &vec) const;
730 
740  void row(const size_t r, vector<Float> &vec) const;
741  void row(const size_t r, view1D<vector<Float>, Float> &vec) const;
742  void row(const size_t r, view1D<matrix::Dense<Float>, Float> &vec) const;
743  void row(const size_t r,
744  view1D<tensor::tensor_Dense<Float>, Float> &vec) const;
745 
755  void col(const size_t c, vector<Float> &vec) const;
756  void col(const size_t c, view1D<vector<Float>, Float> &vec) const;
757  void col(const size_t c, view1D<matrix::Dense<Float>, Float> &vec) const;
758  void col(const size_t c,
759  view1D<tensor::tensor_Dense<Float>, Float> &vec) const;
760 
762 
771  void fill(Float value);
772 
785  void operator=(const Dense<Float> &mat);
786 
799  void operator=(const view_Dense<vector<Float>, Float> &mat);
800 
813  void operator=(const view_Dense<matrix::Dense<Float>, Float> &mat);
814 
828 
838  [[nodiscard]] Float &operator[](size_t i) {
839  if (get_device_mem_stat()) {
840  throw std::runtime_error("Error, GPU vector cant use operator[]");
841  }
842  return data()[first + i];
843  }
844 
855  [[nodiscard]] bool equal(const Dense<Float> &mat,
856  bool compare_cpu_and_device = false) const;
857 
869  [[nodiscard]] bool operator==(const Dense<Float> &mat) const;
870 
882  [[nodiscard]] bool operator!=(const Dense<Float> &mat) const;
883 
893  void reshape(const size_t row, const size_t col);
894 
896 
905  void diag_add(const Float alpha);
906 
915  void diag_sub(const Float alpha);
916 
925  void diag_mul(const Float alpha);
926 
935  void diag_div(const Float alpha);
936 
945  void diag_add(const vector<Float> &vec);
946  void diag_add(const view1D<vector<Float>, Float> &vec);
947  void diag_add(const view1D<matrix::Dense<Float>, Float> &vec);
948  void diag_add(const view1D<tensor::tensor_Dense<Float>, Float> &vec);
949 
958  void diag_sub(const vector<Float> &vec);
959  void diag_sub(const view1D<vector<Float>, Float> &vec);
960  void diag_sub(const view1D<matrix::Dense<Float>, Float> &vec);
961  void diag_sub(const view1D<tensor::tensor_Dense<Float>, Float> &vec);
962 
971  void diag_mul(const vector<Float> &vec);
972  void diag_mul(const view1D<vector<Float>, Float> &vec);
973  void diag_mul(const view1D<matrix::Dense<Float>, Float> &vec);
974  void diag_mul(const view1D<tensor::tensor_Dense<Float>, Float> &vec);
975 
984  void diag_div(const vector<Float> &vec);
985  void diag_div(const view1D<vector<Float>, Float> &vec);
986  void diag_div(const view1D<matrix::Dense<Float>, Float> &vec);
987  void diag_div(const view1D<tensor::tensor_Dense<Float>, Float> &vec);
988 };
991 } // namespace matrix
992 } // namespace monolish
Coodinate (COO) format Matrix (need to sort)
Dense format Matrix.
void row(const size_t r, view1D< vector< Float >, Float > &vec) const
Float at(const size_t i, const size_t j) const
get element A[i][j]
Dense(const view_Dense< matrix::Dense< Float >, Float > &dense)
Create Dense matrix from view Dense matrix.
Float at(const size_t i, const size_t j)
get element A[i][j] (only CPU)
void row(const size_t r, view1D< matrix::Dense< Float >, Float > &vec) const
void move(const view_tensor_Dense< vector< Float >, Float > &tensor_dense, int rowN, int colN)
std::string type() const
get format name "Dense"
void move(const view_tensor_Dense< tensor::tensor_Dense< Float >, Float > &tensor_dense)
Dense(const Dense< Float > &dense, Float value)
Create Dense matrix of the same size as input matrix.
bool operator!=(const Dense< Float > &mat) const
Comparing matrices (A != mat)
void set_first(size_t i)
Set # of non-zero elements.
bool get_device_mem_stat() const
true: sended, false: not send
const Float * end() const
returns a end iterator
std::shared_ptr< Float > get_val()
get shared_ptr of val
void print_all(bool force_cpu=false) const
print all elements to standard I/O
void col(const size_t c, view1D< vector< Float >, Float > &vec) const
std::shared_ptr< bool > get_gpu_status() const
gpu status shared pointer
size_t val_nnz
# of non-zero element (M * N)
void diag_add(const view1D< vector< Float >, Float > &vec)
void operator=(const view_Dense< matrix::Dense< Float >, Float > &mat)
matrix copy
void diag_mul(const view1D< matrix::Dense< Float >, Float > &vec)
void convert(const Dense< Float > &dense)
Create Dense matrix from Dense matrix.
void set_ptr(const size_t M, const size_t N, const Float *value)
Set Dense array from std::vector.
Float at(const size_t i)
get element A[i/col][icol] (only CPU)
Dense(const size_t M, const size_t N, const Float min, const Float max, const std::uint32_t seed)
Create random dense matrix from dense matrix.
Dense(const size_t M, const size_t N, const Float value)
Create construct dense matrix.
void insert(const size_t i, const Float Val)
set element A[i/col][jcol]
void diag(view1D< tensor::tensor_Dense< Float >, Float > &vec) const
Dense(const COO< Float > &coo)
Create dense matrix from COO matrix.
void reshape(const size_t row, const size_t col)
Reshape matrix.
Dense(const size_t M, const size_t N, const Float *value)
Create dense matrix from array.
void diag(vector< Float > &vec) const
get diag. vector
Dense(const size_t M, const size_t N, const vector< Float > &value)
Create dense matrix from monolish::vector.
std::shared_ptr< Float > val
Dense format value (pointer)
void diag_mul(const view1D< tensor::tensor_Dense< Float >, Float > &vec)
const Float * data() const
returns a direct pointer to the matrix
size_t get_col() const
get # of col
~Dense()
destructor of Dense matrix, free GPU memory
size_t get_first() const
get first position
void move(const view_tensor_Dense< matrix::Dense< Float >, Float > &tensor_dense)
void diag_mul(const view1D< vector< Float >, Float > &vec)
void transpose()
get transposed matrix (A = A^T)
bool operator==(const Dense< Float > &mat) const
Comparing matrices (A == mat)
void set_ptr(const size_t M, const size_t N, const std::vector< Float > &value)
Set Dense array from std::vector.
Float * end()
returns a end iterator
void col(const size_t c, view1D< matrix::Dense< Float >, Float > &vec) const
void diag_sub(const vector< Float > &vec)
Vector and diag. vector of Dense format matrix sub.
Dense(const size_t M, const size_t N)
Allocate dense matrix.
void set_ptr(const size_t M, const size_t N, const Float value)
Set Dense array from std::vector.
void move(const view_tensor_Dense< matrix::Dense< Float >, Float > &tensor_dense, int rowN, int colN)
std::shared_ptr< bool > gpu_status
# of non-zero element (M * N)
void diag_add(const view1D< tensor::tensor_Dense< Float >, Float > &vec)
void diag_div(const view1D< matrix::Dense< Float >, Float > &vec)
void move(const view_tensor_Dense< tensor::tensor_Dense< Float >, Float > &tensor_dense, int rowN, int colN)
void diag(view1D< vector< Float >, Float > &vec) const
bool equal(const Dense< Float > &mat, bool compare_cpu_and_device=false) const
Comparing matrices (A == mat)
size_t get_row() const
get # of row
void recv()
recv. data to GPU, and free data on GPU
void resize(size_t N, Float Val=0)
resize matrix value
const Float * begin() const
returns a begin iterator
void fill(Float value)
fill matrix elements with a scalar value
void transpose(const Dense &B)
create transposed matrix from Dense format matrix (A = B^T)
void diag_add(const Float alpha)
Scalar and diag. vector of Dense format matrix add.
void diag_add(const vector< Float > &vec)
Vector and diag. vector of Dense format matrix add.
void row(const size_t r, vector< Float > &vec) const
get row vector
double get_data_size() const
Memory data space required by the matrix.
Float at(const size_t i) const
get element A[i/col][jcol]
void diag_sub(const view1D< matrix::Dense< Float >, Float > &vec)
size_t get_nnz() const
get # of non-zeros
void move(const view_tensor_Dense< vector< Float >, Float > &tensor_dense)
void device_free() const
free data on GPU
Dense(const Dense< Float > &dense)
Create Dense matrix from Dense matrix.
void diag_sub(const view1D< vector< Float >, Float > &vec)
Dense(const size_t M, const size_t N, const std::initializer_list< Float > &list)
Create dense matrix from std::initializer_list.
void diag_div(const view1D< tensor::tensor_Dense< Float >, Float > &vec)
void diag_sub(const Float alpha)
Scalar and diag. vector of Dense format matrix sub.
Float & operator[](size_t i)
reference to the element at position (v[i])
void diag_div(const vector< Float > &vec)
Vector and diag. vector of Dense format matrix div.
void move(const tensor::tensor_Dense< Float > &tensor_dense)
void col(const size_t c, vector< Float > &vec) const
get column vector
bool val_create_flag
matrix create flag;
size_t alloc_nnz
alloced matrix size
Dense(const view_Dense< tensor::tensor_Dense< Float >, Float > &dense)
Create Dense matrix from view Dense matrix.
size_t get_offset() const
get first position (same as get_first())
Float * data()
returns a direct pointer to the matrix
void col(const size_t c, view1D< tensor::tensor_Dense< Float >, Float > &vec) const
void diag_sub(const view1D< tensor::tensor_Dense< Float >, Float > &vec)
void operator=(const Dense< Float > &mat)
matrix copy
void row(const size_t r, view1D< tensor::tensor_Dense< Float >, Float > &vec) const
void set_col(const size_t M)
Set column number.
size_t get_alloc_nnz() const
get # of alloced non-zeros
void move(const tensor::tensor_Dense< Float > &tensor_dense, int rowN, int colN)
void diag_div(const view1D< vector< Float >, Float > &vec)
void diag(view1D< matrix::Dense< Float >, Float > &vec) const
void diag_mul(const Float alpha)
Scalar and diag. vector of Dense format matrix mul.
void insert(const size_t i, const size_t j, const Float Val)
set element A[i][j]
void convert(const COO< Float > &coo)
Create Dense matrix from COO matrix.
void set_row(const size_t N)
Set row number.
Dense(const view_Dense< vector< Float >, Float > &dense)
Create Dense matrix from view Dense matrix.
void diag_mul(const vector< Float > &vec)
Vector and diag. vector of Dense format matrix mul.
void diag_add(const view1D< matrix::Dense< Float >, Float > &vec)
Dense(const size_t M, const size_t N, const std::vector< Float > &value)
Create dense matrix from std::vector.
void operator=(const view_Dense< tensor::tensor_Dense< Float >, Float > &mat)
matrix copy
Dense(const size_t M, const size_t N, const Float min, const Float max)
Create random dense matrix from dense matrix.
void send() const
send data to GPU
void nonfree_recv()
recv. data to GPU (w/o free)
Float * begin()
returns a begin iterator
void diag_div(const Float alpha)
Scalar and diag. vector of Dense format matrix div.
size_t first
first position of data array
void operator=(const view_Dense< vector< Float >, Float > &mat)
matrix copy
void max(const matrix::CRS< double > &A, const matrix::CRS< double > &B, matrix::CRS< double > &C)
Create a new CRS matrix with greatest elements of two matrices (C[0:nnz] = max(A[0:nnz],...
void min(const matrix::CRS< double > &A, const matrix::CRS< double > &B, matrix::CRS< double > &C)
Create a new CRS matrix with smallest elements of two matrices (C[0:nnz] = min(A[0:nnz],...
monolish namespaces