Basic Usage of SiML

SiML facilitates machine learning processes, including preprocessing, learning, and prediction. We will cover the entire pipeline of a machine learning process using the gradient dataset example.

Import necessary modules including siml. FEMIO is used to generate data.

import pathlib
import shutil

import femio
import numpy as np
import siml

Clean up old data if exists.

shutil.rmtree('00_basic_data/raw', ignore_errors=True)
shutil.rmtree('00_basic_data/interim', ignore_errors=True)
shutil.rmtree('00_basic_data/preprocessed', ignore_errors=True)
shutil.rmtree('00_basic_data/model', ignore_errors=True)
shutil.rmtree('00_basic_data/inferred', ignore_errors=True)

Data generation

First, we define a function to generate data and call it to create the dataset.

def generate_data(output_directory):
    # Generate a simple mesh
    n_x_element = np.random.randint(5, 10)
    n_y_element = np.random.randint(5, 10)
    n_z_element = 1
    fem_data = femio.generate_brick(
        'hex',
        n_x_element=n_x_element,
        n_y_element=n_y_element,
        n_z_element=n_z_element,
        x_length=n_x_element,
        y_length=n_y_element,
        z_length=n_z_element)

    # Generate scalar field phi and the gradient field associated to it
    scale = 1 / 5
    nodes = np.copy(fem_data.nodes.data)
    nodes[:, -1] = 0.  # Make pseudo 2D
    shift = np.random.rand(1, 3) / scale
    shift[:, -1] = 0
    square_norm = .5 * np.linalg.norm(nodes - shift, axis=1)**2
    phi = np.cos(square_norm * scale)[:, None]
    grad = - np.sin(square_norm * scale)[:, None] * scale * (nodes - shift)

    # Write data
    fem_data.nodal_data.update_data(
        fem_data.nodes.ids, {'phi': phi, 'grad': grad},
        allow_overwrite=False)
    fem_data.write(
        'ucd', output_directory / 'mesh.inp')
    return


n_train_sample = 20
for i in range(n_train_sample):
    generate_data(pathlib.Path(f"00_basic_data/raw/train/{i}"))

n_validation_sample = 5
for i in range(n_validation_sample):
    generate_data(pathlib.Path(f"00_basic_data/raw/validation/{i}"))

n_test_data = 5
for i in range(n_validation_sample):
    generate_data(pathlib.Path(f"00_basic_data/raw/test/{i}"))

Out:

Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/0/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/1/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/2/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/3/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/4/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/5/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/6/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/7/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/8/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/9/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/10/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/11/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/12/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/13/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/14/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/15/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/16/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/17/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/18/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/19/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/0/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/1/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/2/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/3/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/4/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/0/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/1/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/2/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/3/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/4/mesh.inp

If the process finished successfully, the data should look as follows (visualization using ParaView).

../_images/grad_train.png

Here, we consider the task to predict the gradient field (arrows in the figure above) from the input of the scalar field (color map in the figure above).

Data preprocessing

Here, we extract features from the generated dataset. Data generation and feature extraction is something SiML does not manage because the library does not know what simulation to run and what features to extract. Therefore, users should write some code for these two parts, although SiML (and FEMIO) can support it.

Now, define a call-back function to extract features from the dataset. The function takes two arguments, femio.FEMData object representing a sample in the dataset and pathlib.Path object representing an output directory.

def conversion_function(fem_data, raw_directory):

    node = fem_data.nodes.data

    phi = fem_data.nodal_data.get_attribute_data('phi')
    grad = fem_data.nodal_data.get_attribute_data('grad')[..., None]

    # Generate renormalized adjacency matrix based on Kipf and Welling 2016
    nodal_adj = fem_data.calculate_adjacency_matrix_node()
    nodal_nadj = siml.prepost.normalize_adjacency_matrix(nodal_adj)

    # Generate IsoAM based on Horie et al. 2020
    nodal_isoam_x, nodal_isoam_y, nodal_isoam_z = \
        fem_data.calculate_spatial_gradient_adjacency_matrices(
            'nodal', n_hop=1, moment_matrix=True)

    dict_data = {
        'node': node,
        'phi': phi,
        'grad': grad,
        'nodal_nadj': nodal_nadj,
        'nodal_isoam_x': nodal_isoam_x,
        'nodal_isoam_y': nodal_isoam_y,
        'nodal_isoam_z': nodal_isoam_z,
    }
    return dict_data

From here, SiML can manage most of the process. Please download data.yml file and place it in the 00_basic_data directory. SiML uses YAML files as setting files to control its behavior. Basically, each setting component can be omitted, and if so, the default setting will be adopted. The relevant contents of the YAML file are as follows.

data:  # Data directory setting
  raw: 00_basic_data/raw   # Row data
  interim: 00_basic_data/interim  # Extracted features
  preprocessed: 00_basic_data/preprocessed  # Preprocessed data
  inferred: 00_basic_data/inferred  # Predicted data
conversion:  # Feature extraction setting
  file_type: 'ucd'  # File type to be read
  required_file_names:  # Files to be regarded as data
    - '*.inp'

As can be seen, the structure of the directory follows that of the Cookiecutter Data Science.

Now, generate a RawConverter object by feeding the YAML file and perform feature extraction.

settings_yaml = pathlib.Path('00_basic_data/data.yml')
raw_converter = siml.preprocessing.converter.RawConverter.read_settings(
    settings_yaml, conversion_function=conversion_function)
raw_converter.convert()

Out:

# process: 4
Searching: 00_basic_data/raw

<siml.preprocessing.converted_objects.SimlConvertedItemContainer object at 0x7f37c1d955e0>

Next, perform preprocessing, e.g., scaling of the data. The relevant part of the YAML file is as follows.

preprocess:  # Data scaling setting
  node: std_scale  # Standardization without subtraction of the mean
  phi: standardize   # Standardization
  grad: std_scale
  nodal_nadj: identity  # No scaling
  nodal_isoam_x: identity
  nodal_isoam_y: identity
  nodal_isoam_z: identity
preprocessor = siml.preprocessing.ScalingConverter.read_settings(settings_yaml)
preprocessor.fit_transform()

Training

Then, we move on to the training. Please download isogcn.yml file and place it in the 00_basic_data directory. In the YAML file, the setting for the trainer is written as follows.

trainer:
  output_directory: 00_basic_data/model  # Output directory
  inputs:  # Input data specification
    - name: phi  # Input data name
      dim: 1  # phi's dimention
  support_input:  # Support inputs e.g. adjacency matrix
    - nodal_isoam_x
    - nodal_isoam_y
    - nodal_isoam_z
  outputs:
    - name: grad  # Output data name
      dim: 1  # gradient's dimention (the shape is in [n, 3, 1], so 1)
  prune: false
  n_epoch: 100  # The nmber of epochs
  log_trigger_epoch: 1  # The period to log the training
  stop_trigger_epoch: 5  # The period to condider early stopping
  seed: 0  # The rondom seed
  lazy: false  # If true, data is read lazily rather than on-memory
  batch_size: 4  # The size of the batch
  num_workers: 0  # The number of processes to load data (0 means serial)
  figure_format: png  # Format of the output figures (the default is pdf)

In the same file, the setting for the machine learning model is also written. In this example, we use IsoGCN (Horie et al. ICLR 2021). We can try many machine learning trials with various training and model settings by editing the YAML file.

isogcn_yaml = pathlib.Path('00_basic_data/isogcn.yml')
train_main_setting = siml.setting.MainSetting.read_settings_yaml(
    isogcn_yaml
)
trainer = siml.trainer.Trainer(train_main_setting)
trainer.train()

Out:

Loading data

  0%|                                                    | 0/20 [00:00<?, ?it/s]

Loading data

  0%|                                                     | 0/5 [00:00<?, ?it/s]

Loading data

  0%|                                                     | 0/5 [00:00<?, ?it/s]

num_workers for data_loader: 0
Matrix multiplication mode: A (HW)
Matrix multiplication mode: A (HW)
Output directory: 00_basic_data/model
GPU ID: -1

epoch    train_loss    validation_loss    elapsed_time    tr_DTL/grad    vl_DTL/grad

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

1        9.55390e-01   1.00921e+00        0.05

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

2        9.44104e-01   9.96718e-01        0.28

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

3        9.30822e-01   9.81985e-01        0.45

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

4        9.14615e-01   9.63994e-01        0.66

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

5        8.94295e-01   9.41422e-01        0.84

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

6        8.67600e-01   9.11724e-01        1.04

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

7        8.32764e-01   8.73009e-01        1.23

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

8        7.87382e-01   8.22705e-01        1.42

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

9        7.30057e-01   7.59608e-01        1.60

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

10       6.60385e-01   6.83357e-01        1.92

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

11       5.79056e-01   5.95585e-01        2.09

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

12       4.90470e-01   5.02031e-01        2.26

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

13       4.00213e-01   4.06032e-01        2.45

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

14       3.16655e-01   3.20513e-01        2.63

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

15       2.48826e-01   2.50392e-01        2.80

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

16       2.02996e-01   2.00999e-01        2.99

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

17       1.79193e-01   1.70532e-01        3.18

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

18       1.69562e-01   1.60852e-01        3.37

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

19       1.65145e-01   1.63580e-01        3.56

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

20       1.59163e-01   1.68419e-01        3.89

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

21       1.52727e-01   1.70816e-01        4.07

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

22       1.49501e-01   1.73347e-01        4.26

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

23       1.48993e-01   1.76401e-01        4.44

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

24       1.48670e-01   1.77253e-01        4.62

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

25       1.47304e-01   1.74421e-01        4.80

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

26       1.46056e-01   1.71192e-01        4.98

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

27       1.45208e-01   1.69317e-01        5.16

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

28       1.44432e-01   1.67984e-01        5.34

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

29       1.43707e-01   1.66621e-01        5.52

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

30       1.42953e-01   1.65555e-01        5.71

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

31       1.42255e-01   1.64261e-01        6.04

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

32       1.41556e-01   1.63642e-01        6.22

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

33       1.40921e-01   1.62603e-01        6.41

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

34       1.40310e-01   1.61687e-01        6.60

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

35       1.39638e-01   1.62005e-01        6.78

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

36       1.38995e-01   1.61324e-01        6.97

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

37       1.38376e-01   1.60781e-01        7.16

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

38       1.37752e-01   1.60641e-01        7.35

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

39       1.37139e-01   1.60224e-01        7.54

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

40       1.36545e-01   1.58111e-01        7.73

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

41       1.35910e-01   1.57232e-01        7.93

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

42       1.35297e-01   1.56691e-01        8.28

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

43       1.34708e-01   1.56145e-01        8.46

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

44       1.34093e-01   1.56384e-01        8.64

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

45       1.33516e-01   1.55074e-01        8.82

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

46       1.32927e-01   1.54722e-01        9.00

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

47       1.32322e-01   1.53644e-01        9.18

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

48       1.31757e-01   1.53264e-01        9.36

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

49       1.31175e-01   1.52834e-01        9.55

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

50       1.30610e-01   1.51711e-01        9.73

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

51       1.30047e-01   1.51348e-01        9.92

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

52       1.29482e-01   1.50553e-01        10.26

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

53       1.28932e-01   1.50127e-01        10.45

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

54       1.28390e-01   1.49862e-01        10.63

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

55       1.27838e-01   1.49378e-01        10.82

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

56       1.27319e-01   1.48640e-01        11.00

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

57       1.26838e-01   1.47106e-01        11.19

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

58       1.26295e-01   1.46909e-01        11.37

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

59       1.25771e-01   1.46919e-01        11.56

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

60       1.25278e-01   1.47045e-01        11.74

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

61       1.24802e-01   1.45886e-01        11.94

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

62       1.24309e-01   1.45975e-01        12.12

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

63       1.23876e-01   1.44792e-01        12.29

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

64       1.23427e-01   1.44751e-01        12.68

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

65       1.22973e-01   1.44144e-01        12.85

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

66       1.22509e-01   1.43905e-01        13.05

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

67       1.22065e-01   1.44610e-01        13.25

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

68       1.21729e-01   1.43695e-01        13.45

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

69       1.21129e-01   1.43816e-01        13.65

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

70       1.20690e-01   1.43633e-01        13.85

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

71       1.20224e-01   1.42921e-01        14.04

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

72       1.19721e-01   1.42962e-01        14.24

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

73       1.19170e-01   1.42483e-01        14.44

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

74       1.18644e-01   1.42782e-01        14.78

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

75       1.18086e-01   1.42605e-01        14.98

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

76       1.17531e-01   1.42367e-01        15.18

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

77       1.16954e-01   1.42020e-01        15.37

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

78       1.16343e-01   1.41599e-01        15.57

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

79       1.15763e-01   1.42249e-01        15.77

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

80       1.15034e-01   1.41202e-01        15.98

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

81       1.14654e-01   1.40747e-01        16.18

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

82       1.13878e-01   1.43138e-01        16.38

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

83       1.12989e-01   1.41570e-01        16.58

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

84       1.12614e-01   1.39815e-01        16.76

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

85       1.11691e-01   1.42010e-01        16.95

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

86       1.10850e-01   1.41207e-01        17.28

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

87       1.10123e-01   1.39598e-01        17.48

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

88       1.09331e-01   1.39254e-01        17.69

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

89       1.08631e-01   1.39062e-01        17.89

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

90       1.07844e-01   1.38669e-01        18.09

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

91       1.07174e-01   1.37388e-01        18.29

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

92       1.06406e-01   1.37857e-01        18.49

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

93       1.05777e-01   1.38141e-01        18.69

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

94       1.05218e-01   1.36149e-01        18.89

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

95       1.04192e-01   1.36646e-01        19.09

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

96       1.03482e-01   1.36258e-01        19.48

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

97       1.03210e-01   1.34328e-01        19.69

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

98       1.02128e-01   1.35822e-01        19.91

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

99       1.01465e-01   1.35530e-01        20.12

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

100      1.00953e-01   1.32742e-01        20.33

0.132742

The results of the training is stored in 00_basic_data/model. If you remove output_directory line in the YAML file, the output directory will be determined automatically.

00_basic_data/model
├── log.csv               # Logfile of the training
├── network.png           # Network structure figure
├── plot.png              # Loss-epoch plot
├── settings.yml          # Trainin setting file for reproducibility
├── snapshot_epoch_1.pth  # Model parameter at the epoch 1
├── snapshot_epoch_2.pth
├── snapshot_epoch_3.pth
.
.
.

The network structure used in the training is shown below.

../_images/network.png

The loss vs. epoch curve is shown below.

../_images/plot.png

Prediction

Using the trained model, we can make a prediction. In the isogcn YAML file, the setting for inference is also written.

inferer = siml.inferer.Inferer.read_settings_file(
    isogcn_yaml, model_path=trainer.setting.trainer.output_directory)
inferer.infer(
    data_directories=[pathlib.Path('00_basic_data/preprocessed/test')],
)

Out:

Load snapshot file: 00_basic_data/model/snapshot_epoch_100.pth
Matrix multiplication mode: A (HW)
Matrix multiplication mode: A (HW)
--
              Data: 00_basic_data/preprocessed/test/0
Inference time [s]: 1.19400e-03
              Loss: 0.0849544107913971
--
--
              Data: 00_basic_data/preprocessed/test/1
Inference time [s]: 1.00970e-03
              Loss: 0.15591129660606384
--
--
              Data: 00_basic_data/preprocessed/test/2
Inference time [s]: 1.20711e-03
              Loss: 0.32082125544548035
--
--
              Data: 00_basic_data/preprocessed/test/3
Inference time [s]: 1.18113e-03
              Loss: 0.027971936389803886
--
--
              Data: 00_basic_data/preprocessed/test/4
Inference time [s]: 1.11938e-03
              Loss: 0.12476172298192978
--
Parsing data
Reading file: 00_basic_data/raw/test/0/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Parsing data
Reading file: 00_basic_data/raw/test/1/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Parsing data
Reading file: 00_basic_data/raw/test/2/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Parsing data
Reading file: 00_basic_data/raw/test/3/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Parsing data
Reading file: 00_basic_data/raw/test/4/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Start writing data
File written in: 00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/0/mesh.inp
Start writing data
File written in: 00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/1/mesh.inp
Start writing data
File written in: 00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/2/mesh.inp
Start writing data
File written in: 00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/3/mesh.inp
Start writing data
File written in: 00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/4/mesh.inp

[{'dict_x': {'phi': array([[ 4.5436469e-01],
       [ 7.3651046e-01],
       [ 8.3279353e-01],
       [ 8.0777806e-01],
       [ 6.4162207e-01],
       [ 2.5016350e-01],
       [-3.8103256e-01],
       [-9.4404101e-01],
       [-7.5989789e-01],
       [ 3.7148324e-01],
       [ 7.5312889e-01],
       [ 9.3527782e-01],
       [ 9.7895610e-01],
       [ 9.6909106e-01],
       [ 8.8089859e-01],
       [ 5.9236848e-01],
       [-9.7663291e-03],
       [-7.5360435e-01],
       [-9.4717252e-01],
       [-5.4030481e-04],
       [ 8.5932666e-01],
       [ 9.8373491e-01],
       [ 9.9970311e-01],
       [ 9.9768001e-01],
       [ 9.5175451e-01],
       [ 7.2782290e-01],
       [ 1.7054218e-01],
       [-6.2285131e-01],
       [-9.8945558e-01],
       [-1.8068872e-01],
       [ 8.4953225e-01],
       [ 9.8017365e-01],
       [ 9.9906605e-01],
       [ 9.9621928e-01],
       [ 9.4580030e-01],
       [ 7.1476513e-01],
       [ 1.5193553e-01],
       [-6.3748980e-01],
       [-9.8654914e-01],
       [-1.6211440e-01],
       [ 7.1473444e-01],
       [ 9.1377521e-01],
       [ 9.6585423e-01],
       [ 9.5359498e-01],
       [ 8.5273361e-01],
       [ 5.4587626e-01],
       [-6.6278771e-02],
       [-7.8955853e-01],
       [-9.2752707e-01],
       [ 5.5991303e-02],
       [ 3.6849603e-01],
       [ 6.6956931e-01],
       [ 7.7698791e-01],
       [ 7.4870396e-01],
       [ 5.6657457e-01],
       [ 1.5791710e-01],
       [-4.6636853e-01],
       [-9.7089577e-01],
       [-6.9533628e-01],
       [ 4.5722660e-01],
       [-2.3912333e-01],
       [ 1.1452328e-01],
       [ 2.6770774e-01],
       [ 2.2530025e-01],
       [-1.6509999e-02],
       [-4.4419250e-01],
       [-8.9303017e-01],
       [-9.2977309e-01],
       [-1.4947180e-01],
       [ 8.8834482e-01],
       [ 4.5436469e-01],
       [ 7.3651046e-01],
       [ 8.3279353e-01],
       [ 8.0777806e-01],
       [ 6.4162207e-01],
       [ 2.5016350e-01],
       [-3.8103256e-01],
       [-9.4404101e-01],
       [-7.5989789e-01],
       [ 3.7148324e-01],
       [ 7.5312889e-01],
       [ 9.3527782e-01],
       [ 9.7895610e-01],
       [ 9.6909106e-01],
       [ 8.8089859e-01],
       [ 5.9236848e-01],
       [-9.7663291e-03],
       [-7.5360435e-01],
       [-9.4717252e-01],
       [-5.4030481e-04],
       [ 8.5932666e-01],
       [ 9.8373491e-01],
       [ 9.9970311e-01],
       [ 9.9768001e-01],
       [ 9.5175451e-01],
       [ 7.2782290e-01],
       [ 1.7054218e-01],
       [-6.2285131e-01],
       [-9.8945558e-01],
       [-1.8068872e-01],
       [ 8.4953225e-01],
       [ 9.8017365e-01],
       [ 9.9906605e-01],
       [ 9.9621928e-01],
       [ 9.4580030e-01],
       [ 7.1476513e-01],
       [ 1.5193553e-01],
       [-6.3748980e-01],
       [-9.8654914e-01],
       [-1.6211440e-01],
       [ 7.1473444e-01],
       [ 9.1377521e-01],
       [ 9.6585423e-01],
       [ 9.5359498e-01],
       [ 8.5273361e-01],
       [ 5.4587626e-01],
       [-6.6278771e-02],
       [-7.8955853e-01],
       [-9.2752707e-01],
       [ 5.5991303e-02],
       [ 3.6849603e-01],
       [ 6.6956931e-01],
       [ 7.7698791e-01],
       [ 7.4870396e-01],
       [ 5.6657457e-01],
       [ 1.5791710e-01],
       [-4.6636853e-01],
       [-9.7089577e-01],
       [-6.9533628e-01],
       [ 4.5722660e-01],
       [-2.3912333e-01],
       [ 1.1452328e-01],
       [ 2.6770774e-01],
       [ 2.2530025e-01],
       [-1.6509999e-02],
       [-4.4419250e-01],
       [-8.9303017e-01],
       [-9.2977309e-01],
       [-1.4947180e-01],
       [ 8.8834482e-01]], dtype=float32)}, 'dict_y': {'grad': array([[[ 0.41758004],
        [ 0.4485236 ],
        [ 0.01275207]],

       [[ 0.17098868],
        [ 0.22500211],
        [-0.02701701]],

       [[ 0.02802155],
        [ 0.13574885],
        [-0.02065004]],

       [[-0.0857912 ],
        [ 0.15950066],
        [-0.0278911 ]],

       [[-0.2745516 ],
        [ 0.31001893],
        [-0.02183976]],

       [[-0.60422844],
        [ 0.45504117],
        [-0.00531812]],

       [[-0.7151128 ],
        [ 0.3353063 ],
        [-0.00555475]],

       [[-0.22164825],
        [ 0.19269183],
        [ 0.05927456]],

       [[ 0.38312727],
        [ 0.06963376],
        [ 0.13913694]],

       [[ 1.3904384 ],
        [-0.46131092],
        [-0.04652914]],

       [[ 0.19190614],
        [ 0.18057676],
        [-0.0281899 ]],

       [[ 0.06092096],
        [ 0.06854791],
        [-0.04214417]],

       [[ 0.00928405],
        [ 0.03848731],
        [-0.02160716]],

       [[-0.03288215],
        [ 0.04762333],
        [-0.03010479]],

       [[-0.1578122 ],
        [ 0.10407434],
        [-0.07859108]],

       [[-0.4761275 ],
        [ 0.23220949],
        [-0.07694039]],

       [[-0.7850545 ],
        [ 0.24493565],
        [-0.05925418]],

       [[-0.39192006],
        [ 0.13812809],
        [ 0.14026621]],

       [[ 0.19573095],
        [-0.00759303],
        [ 0.16650392]],

       [[ 1.1122998 ],
        [-0.28793234],
        [ 0.02960201]],

       [[ 0.10235219],
        [ 0.03435521],
        [-0.01794508]],

       [[ 0.03072107],
        [ 0.01224166],
        [-0.01869219]],

       [[ 0.00453185],
        [ 0.00676024],
        [-0.00655406]],

       [[-0.01821592],
        [ 0.00891032],
        [-0.0126844 ]],

       [[-0.11536887],
        [ 0.02523439],
        [-0.05512359]],

       [[-0.3363987 ],
        [ 0.05741881],
        [-0.07141147]],

       [[-0.82401806],
        [ 0.08909564],
        [-0.11719365]],

       [[-0.53157765],
        [ 0.04465372],
        [ 0.14112274]],

       [[ 0.11261268],
        [-0.00367744],
        [ 0.12878564]],

       [[ 0.7528878 ],
        [-0.07665231],
        [ 0.05162128]],

       [[ 0.10992552],
        [-0.05635902],
        [-0.02129861]],

       [[ 0.03378306],
        [-0.02191958],
        [-0.0224173 ]],

       [[ 0.00519692],
        [-0.01310947],
        [-0.00957162]],

       [[-0.02057428],
        [-0.01693148],
        [-0.01615713]],

       [[-0.12151263],
        [-0.04117929],
        [-0.05963093]],

       [[-0.35767815],
        [-0.08254268],
        [-0.07205542]],

       [[-0.8256831 ],
        [-0.13307771],
        [-0.11567382]],

       [[-0.5084215 ],
        [-0.06531024],
        [ 0.1423876 ]],

       [[ 0.11861104],
        [ 0.00389711],
        [ 0.13192146]],

       [[ 0.79473597],
        [ 0.13022076],
        [ 0.0589258 ]],

       [[ 0.22404982],
        [-0.24106123],
        [-0.03394189]],

       [[ 0.07991789],
        [-0.12808353],
        [-0.06629546]],

       [[ 0.01447052],
        [-0.08522928],
        [-0.04163149]],

       [[-0.04720952],
        [-0.09999356],
        [-0.05173624]],

       [[-0.14329088],
        [-0.13963248],
        [-0.07671174]],

       [[-0.5263644 ],
        [-0.31396315],
        [-0.10331914]],

       [[-0.7731485 ],
        [-0.3186014 ],
        [-0.05749109]],

       [[-0.29112226],
        [-0.10852949],
        [ 0.13316143]],

       [[ 0.2938805 ],
        [ 0.07802774],
        [ 0.22432871]],

       [[ 1.2413641 ],
        [ 0.38999566],
        [ 0.04441189]],

       [[ 0.41808623],
        [-0.5618357 ],
        [-0.00289442]],

       [[ 0.17342736],
        [-0.3793973 ],
        [-0.0709355 ]],

       [[ 0.03285206],
        [-0.28957656],
        [-0.08191611]],

       [[-0.08006506],
        [-0.31118053],
        [-0.07654732]],

       [[-0.29929313],
        [-0.45664898],
        [-0.07240317]],

       [[-0.58730817],
        [-0.5008056 ],
        [-0.06312688]],

       [[-0.64190054],
        [-0.3782465 ],
        [ 0.07062514]],

       [[-0.08401602],
        [-0.05760451],
        [ 0.08559918]],

       [[ 0.74477416],
        [ 0.22183934],
        [ 0.32710105]],

       [[ 1.3480525 ],
        [ 0.45922822],
        [ 0.00469528]],

       [[ 0.37702358],
        [-0.6943562 ],
        [-0.02068181]],

       [[ 0.27669877],
        [-0.7913171 ],
        [-0.02319906]],

       [[ 0.06714453],
        [-0.8034497 ],
        [-0.03232662]],

       [[-0.16260646],
        [-0.79965854],
        [-0.02775178]],

       [[-0.36124587],
        [-0.72288156],
        [-0.02047985]],

       [[-0.52630246],
        [-0.529256  ],
        [-0.02325808]],

       [[-0.3790037 ],
        [-0.3502291 ],
        [ 0.04278249]],

       [[ 0.06209863],
        [-0.00617271],
        [ 0.04326932]],

       [[ 1.0760939 ],
        [ 0.33697814],
        [ 0.09619863]],

       [[ 0.759203  ],
        [ 0.21904582],
        [ 0.01630557]],

       [[ 0.41758004],
        [ 0.44852367],
        [-0.01275209]],

       [[ 0.17098866],
        [ 0.22500211],
        [ 0.027017  ]],

       [[ 0.02802155],
        [ 0.13574885],
        [ 0.02065006]],

       [[-0.0857912 ],
        [ 0.15950063],
        [ 0.02789111]],

       [[-0.2745516 ],
        [ 0.31001893],
        [ 0.02183975]],

       [[-0.6042284 ],
        [ 0.45504117],
        [ 0.00531812]],

       [[-0.71511275],
        [ 0.33530626],
        [ 0.00555478]],

       [[-0.22164825],
        [ 0.19269182],
        [-0.05927457]],

       [[ 0.38312727],
        [ 0.06963374],
        [-0.13913685]],

       [[ 1.3904383 ],
        [-0.46131095],
        [ 0.04652922]],

       [[ 0.19190615],
        [ 0.18057676],
        [ 0.02818988]],

       [[ 0.06092096],
        [ 0.06854791],
        [ 0.04214416]],

       [[ 0.00928405],
        [ 0.03848731],
        [ 0.02160716]],

       [[-0.03288214],
        [ 0.04762333],
        [ 0.0301048 ]],

       [[-0.1578122 ],
        [ 0.10407434],
        [ 0.07859108]],

       [[-0.4761275 ],
        [ 0.2322095 ],
        [ 0.0769404 ]],

       [[-0.78505445],
        [ 0.24493569],
        [ 0.05925418]],

       [[-0.39192   ],
        [ 0.13812809],
        [-0.14026617]],

       [[ 0.19573095],
        [-0.00759303],
        [-0.16650383]],

       [[ 1.1122998 ],
        [-0.2879323 ],
        [-0.02960195]],

       [[ 0.10235219],
        [ 0.03435521],
        [ 0.0179451 ]],

       [[ 0.03072107],
        [ 0.01224166],
        [ 0.01869219]],

       [[ 0.00453185],
        [ 0.00676024],
        [ 0.00655405]],

       [[-0.01821592],
        [ 0.00891032],
        [ 0.01268439]],

       [[-0.11536887],
        [ 0.0252344 ],
        [ 0.0551236 ]],

       [[-0.3363987 ],
        [ 0.05741881],
        [ 0.07141146]],

       [[-0.82401806],
        [ 0.08909565],
        [ 0.11719357]],

       [[-0.5315776 ],
        [ 0.04465372],
        [-0.14112274]],

       [[ 0.11261269],
        [-0.00367745],
        [-0.12878563]],

       [[ 0.7528878 ],
        [-0.07665231],
        [-0.05162134]],

       [[ 0.10992552],
        [-0.05635902],
        [ 0.02129861]],

       [[ 0.03378307],
        [-0.02191958],
        [ 0.02241729]],

       [[ 0.00519692],
        [-0.01310948],
        [ 0.00957162]],

       [[-0.02057428],
        [-0.01693147],
        [ 0.01615713]],

       [[-0.12151264],
        [-0.04117929],
        [ 0.05963093]],

       [[-0.35767812],
        [-0.08254269],
        [ 0.07205541]],

       [[-0.8256831 ],
        [-0.13307771],
        [ 0.11567386]],

       [[-0.5084215 ],
        [-0.06531023],
        [-0.14238758]],

       [[ 0.11861104],
        [ 0.00389711],
        [-0.1319215 ]],

       [[ 0.79473585],
        [ 0.13022077],
        [-0.05892579]],

       [[ 0.22404982],
        [-0.24106124],
        [ 0.03394188]],

       [[ 0.07991789],
        [-0.12808353],
        [ 0.06629547]],

       [[ 0.01447052],
        [-0.08522929],
        [ 0.04163149]],

       [[-0.04720952],
        [-0.09999355],
        [ 0.05173623]],

       [[-0.14329088],
        [-0.1396325 ],
        [ 0.07671176]],

       [[-0.5263644 ],
        [-0.31396315],
        [ 0.10331909]],

       [[-0.7731485 ],
        [-0.3186014 ],
        [ 0.05749106]],

       [[-0.29112226],
        [-0.10852949],
        [-0.13316137]],

       [[ 0.29388046],
        [ 0.07802774],
        [-0.22432862]],

       [[ 1.2413641 ],
        [ 0.38999566],
        [-0.04441187]],

       [[ 0.41808617],
        [-0.56183565],
        [ 0.00289446]],

       [[ 0.17342737],
        [-0.37939727],
        [ 0.07093548]],

       [[ 0.03285206],
        [-0.28957656],
        [ 0.08191615]],

       [[-0.08006506],
        [-0.31118056],
        [ 0.07654736]],

       [[-0.29929307],
        [-0.45664895],
        [ 0.07240313]],

       [[-0.58730817],
        [-0.5008056 ],
        [ 0.06312694]],

       [[-0.64190054],
        [-0.37824643],
        [-0.0706251 ]],

       [[-0.08401602],
        [-0.0576045 ],
        [-0.08559912]],

       [[ 0.74477416],
        [ 0.22183932],
        [-0.32710096]],

       [[ 1.3480526 ],
        [ 0.45922822],
        [-0.00469532]],

       [[ 0.3770236 ],
        [-0.69435626],
        [ 0.02068183]],

       [[ 0.27669877],
        [-0.7913171 ],
        [ 0.02319917]],

       [[ 0.06714451],
        [-0.8034496 ],
        [ 0.03232662]],

       [[-0.16260646],
        [-0.7996587 ],
        [ 0.02775167]],

       [[-0.36124587],
        [-0.72288156],
        [ 0.02047981]],

       [[-0.52630246],
        [-0.5292559 ],
        [ 0.0232581 ]],

       [[-0.3790037 ],
        [-0.3502291 ],
        [-0.04278243]],

       [[ 0.06209863],
        [-0.0061727 ],
        [-0.04326931]],

       [[ 1.0760939 ],
        [ 0.3369781 ],
        [-0.09619872]],

       [[ 0.75920314],
        [ 0.21904583],
        [-0.01630555]]], dtype=float32)}, 'original_shapes': array([[140]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/0'), 'inference_time': 0.001194000244140625, 'inference_start_datetime': '2025-01-24_06-58-17.017657', 'dict_answer': {'grad': array([[[ 0.40642408],
        [ 0.42861277],
        [-0.        ]],

       [[ 0.17332612],
        [ 0.32546   ],
        [-0.        ]],

       [[ 0.03113247],
        [ 0.2663548 ],
        [-0.        ]],

       [[-0.08474576],
        [ 0.28362942],
        [-0.        ]],

       [[-0.26367265],
        [ 0.36904937],
        [-0.        ]],

       [[-0.5264723 ],
        [ 0.46584764],
        [-0.        ]],

       [[-0.6876538 ],
        [ 0.4448495 ],
        [-0.        ]],

       [[-0.31127927],
        [ 0.15869561],
        [-0.        ]],

       [[ 0.74349385],
        [-0.3127656 ],
        [ 0.        ]],

       [[ 1.2476019 ],
        [-0.44671533],
        [ 0.        ]],

       [[ 0.3001467 ],
        [ 0.1849586 ],
        [-0.        ]],

       [[ 0.09068632],
        [ 0.09950173],
        [-0.        ]],

       [[ 0.01147657],
        [ 0.05737391],
        [-0.        ]],

       [[-0.03546655],
        [ 0.06935974],
        [-0.        ]],

       [[-0.16270426],
        [ 0.13306798],
        [-0.        ]],

       [[-0.43809113],
        [ 0.22651039],
        [-0.        ]],

       [[-0.7437265 ],
        [ 0.28113297],
        [-0.        ]],

       [[-0.6203613 ],
        [ 0.18480544],
        [-0.        ]],

       [[ 0.36683223],
        [-0.09017047],
        [ 0.        ]],

       [[ 1.3437618 ],
        [-0.28114632],
        [ 0.        ]],

       [[ 0.23333253],
        [ 0.04150045],
        [-0.        ]],

       [[ 0.04602712],
        [ 0.01457603],
        [-0.        ]],

       [[ 0.00137031],
        [ 0.00197723],
        [-0.        ]],

       [[-0.00978701],
        [ 0.00552427],
        [-0.        ]],

       [[-0.10548694],
        [ 0.02490061],
        [-0.        ]],

       [[-0.372893  ],
        [ 0.05564735],
        [-0.        ]],

       [[-0.7328661 ],
        [ 0.0799576 ],
        [-0.        ]],

       [[-0.7383429 ],
        [ 0.06348407],
        [-0.        ]],

       [[ 0.16565844],
        [-0.01175295],
        [ 0.        ]],

       [[ 1.3216441 ],
        [-0.07981072],
        [ 0.        ]],

       [[ 0.24068232],
        [-0.06269965],
        [-0.        ]],

       [[ 0.0507711 ],
        [-0.0235497 ],
        [-0.        ]],

       [[ 0.00242998],
        [-0.00513552],
        [-0.        ]],

       [[-0.01248926],
        [-0.01032536],
        [-0.        ]],

       [[-0.1116363 ],
        [-0.03859758],
        [-0.        ]],

       [[-0.38028786],
        [-0.08312202],
        [-0.        ]],

       [[-0.7351272 ],
        [-0.1174738 ],
        [-0.        ]],

       [[-0.72712976],
        [-0.09157184],
        [-0.        ]],

       [[ 0.18696444],
        [ 0.01942835],
        [ 0.        ]],

       [[ 1.3259866 ],
        [ 0.11728143],
        [ 0.        ]],

       [[ 0.31909102],
        [-0.22300494],
        [-0.        ]],

       [[ 0.10408911],
        [-0.12952484],
        [-0.        ]],

       [[ 0.0145705 ],
        [-0.08261055],
        [-0.        ]],

       [[-0.04328561],
        [-0.09600436],
        [-0.        ]],

       [[-0.17956269],
        [-0.16655193],
        [-0.        ]],

       [[-0.45559955],
        [-0.26715657],
        [-0.        ]],

       [[-0.7421265 ],
        [-0.31815252],
        [-0.        ]],

       [[-0.5791633 ],
        [-0.19567257],
        [-0.        ]],

       [[ 0.42748764],
        [ 0.1191734 ],
        [ 0.        ]],

       [[ 1.341654  ],
        [ 0.31835344],
        [ 0.        ]],

       [[ 0.42413226],
        [-0.48234156],
        [-0.        ]],

       [[ 0.1903207 ],
        [-0.38537833],
        [-0.        ]],

       [[ 0.03540272],
        [-0.32662642],
        [-0.        ]],

       [[-0.09530044],
        [-0.34395042],
        [-0.        ]],

       [[-0.28326344],
        [-0.42754084],
        [-0.        ]],

       [[-0.536939  ],
        [-0.5123432 ],
        [-0.        ]],

       [[-0.6579248 ],
        [-0.45897302],
        [-0.        ]],

       [[-0.22603329],
        [-0.12426671],
        [-0.        ]],

       [[ 0.822004  ],
        [ 0.37289208],
        [ 0.        ]],

       [[ 1.195075  ],
        [ 0.4614426 ],
        [ 0.        ]],

       [[ 0.44300222],
        [-0.6979991 ],
        [-0.        ]],

       [[ 0.25455216],
        [-0.71412396],
        [-0.        ]],

       [[ 0.05418536],
        [-0.69261557],
        [-0.        ]],

       [[-0.14006574],
        [-0.70037144],
        [-0.        ]],

       [[-0.3437151 ],
        [-0.71875566],
        [-0.        ]],

       [[-0.4871734 ],
        [-0.64404356],
        [-0.        ]],

       [[-0.33469042],
        [-0.32348177],
        [-0.        ]],

       [[ 0.34743   ],
        [ 0.2646338 ],
        [ 0.        ]],

       [[ 1.1309129 ],
        [ 0.710778  ],
        [ 0.        ]],

       [[ 0.6170245 ],
        [ 0.330081  ],
        [ 0.        ]],

       [[ 0.40642408],
        [ 0.42861277],
        [-0.        ]],

       [[ 0.17332612],
        [ 0.32546   ],
        [-0.        ]],

       [[ 0.03113247],
        [ 0.2663548 ],
        [-0.        ]],

       [[-0.08474576],
        [ 0.28362942],
        [-0.        ]],

       [[-0.26367265],
        [ 0.36904937],
        [-0.        ]],

       [[-0.5264723 ],
        [ 0.46584764],
        [-0.        ]],

       [[-0.6876538 ],
        [ 0.4448495 ],
        [-0.        ]],

       [[-0.31127927],
        [ 0.15869561],
        [-0.        ]],

       [[ 0.74349385],
        [-0.3127656 ],
        [ 0.        ]],

       [[ 1.2476019 ],
        [-0.44671533],
        [ 0.        ]],

       [[ 0.3001467 ],
        [ 0.1849586 ],
        [-0.        ]],

       [[ 0.09068632],
        [ 0.09950173],
        [-0.        ]],

       [[ 0.01147657],
        [ 0.05737391],
        [-0.        ]],

       [[-0.03546655],
        [ 0.06935974],
        [-0.        ]],

       [[-0.16270426],
        [ 0.13306798],
        [-0.        ]],

       [[-0.43809113],
        [ 0.22651039],
        [-0.        ]],

       [[-0.7437265 ],
        [ 0.28113297],
        [-0.        ]],

       [[-0.6203613 ],
        [ 0.18480544],
        [-0.        ]],

       [[ 0.36683223],
        [-0.09017047],
        [ 0.        ]],

       [[ 1.3437618 ],
        [-0.28114632],
        [ 0.        ]],

       [[ 0.23333253],
        [ 0.04150045],
        [-0.        ]],

       [[ 0.04602712],
        [ 0.01457603],
        [-0.        ]],

       [[ 0.00137031],
        [ 0.00197723],
        [-0.        ]],

       [[-0.00978701],
        [ 0.00552427],
        [-0.        ]],

       [[-0.10548694],
        [ 0.02490061],
        [-0.        ]],

       [[-0.372893  ],
        [ 0.05564735],
        [-0.        ]],

       [[-0.7328661 ],
        [ 0.0799576 ],
        [-0.        ]],

       [[-0.7383429 ],
        [ 0.06348407],
        [-0.        ]],

       [[ 0.16565844],
        [-0.01175295],
        [ 0.        ]],

       [[ 1.3216441 ],
        [-0.07981072],
        [ 0.        ]],

       [[ 0.24068232],
        [-0.06269965],
        [-0.        ]],

       [[ 0.0507711 ],
        [-0.0235497 ],
        [-0.        ]],

       [[ 0.00242998],
        [-0.00513552],
        [-0.        ]],

       [[-0.01248926],
        [-0.01032536],
        [-0.        ]],

       [[-0.1116363 ],
        [-0.03859758],
        [-0.        ]],

       [[-0.38028786],
        [-0.08312202],
        [-0.        ]],

       [[-0.7351272 ],
        [-0.1174738 ],
        [-0.        ]],

       [[-0.72712976],
        [-0.09157184],
        [-0.        ]],

       [[ 0.18696444],
        [ 0.01942835],
        [ 0.        ]],

       [[ 1.3259866 ],
        [ 0.11728143],
        [ 0.        ]],

       [[ 0.31909102],
        [-0.22300494],
        [-0.        ]],

       [[ 0.10408911],
        [-0.12952484],
        [-0.        ]],

       [[ 0.0145705 ],
        [-0.08261055],
        [-0.        ]],

       [[-0.04328561],
        [-0.09600436],
        [-0.        ]],

       [[-0.17956269],
        [-0.16655193],
        [-0.        ]],

       [[-0.45559955],
        [-0.26715657],
        [-0.        ]],

       [[-0.7421265 ],
        [-0.31815252],
        [-0.        ]],

       [[-0.5791633 ],
        [-0.19567257],
        [-0.        ]],

       [[ 0.42748764],
        [ 0.1191734 ],
        [ 0.        ]],

       [[ 1.341654  ],
        [ 0.31835344],
        [ 0.        ]],

       [[ 0.42413226],
        [-0.48234156],
        [-0.        ]],

       [[ 0.1903207 ],
        [-0.38537833],
        [-0.        ]],

       [[ 0.03540272],
        [-0.32662642],
        [-0.        ]],

       [[-0.09530044],
        [-0.34395042],
        [-0.        ]],

       [[-0.28326344],
        [-0.42754084],
        [-0.        ]],

       [[-0.536939  ],
        [-0.5123432 ],
        [-0.        ]],

       [[-0.6579248 ],
        [-0.45897302],
        [-0.        ]],

       [[-0.22603329],
        [-0.12426671],
        [-0.        ]],

       [[ 0.822004  ],
        [ 0.37289208],
        [ 0.        ]],

       [[ 1.195075  ],
        [ 0.4614426 ],
        [ 0.        ]],

       [[ 0.44300222],
        [-0.6979991 ],
        [-0.        ]],

       [[ 0.25455216],
        [-0.71412396],
        [-0.        ]],

       [[ 0.05418536],
        [-0.69261557],
        [-0.        ]],

       [[-0.14006574],
        [-0.70037144],
        [-0.        ]],

       [[-0.3437151 ],
        [-0.71875566],
        [-0.        ]],

       [[-0.4871734 ],
        [-0.64404356],
        [-0.        ]],

       [[-0.33469042],
        [-0.32348177],
        [-0.        ]],

       [[ 0.34743   ],
        [ 0.2646338 ],
        [ 0.        ]],

       [[ 1.1309129 ],
        [ 0.710778  ],
        [ 0.        ]],

       [[ 0.6170245 ],
        [ 0.330081  ],
        [ 0.        ]]], dtype=float32)}, 'loss': 0.0849544107913971, 'raw_loss': 0.01144419889897108, 'output_directory': PosixPath('00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/0'), 'fem_data': <femio.fem_data.FEMData object at 0x7f37edbeae20>}, {'dict_x': {'phi': array([[ 0.90399957],
       [ 0.9701677 ],
       [ 0.9694085 ],
       [ 0.8999687 ],
       [ 0.65681386],
       [ 0.11323014],
       [-0.6362584 ],
       [ 0.9703388 ],
       [ 0.99888253],
       [ 0.9987306 ],
       [ 0.9680396 ],
       [ 0.7920624 ],
       [ 0.3060756 ],
       [-0.4724284 ],
       [ 0.9697545 ],
       [ 0.9987659 ],
       [ 0.99860656],
       [ 0.96743345],
       [ 0.7905917 ],
       [ 0.30378473],
       [-0.47454718],
       [ 0.9008909 ],
       [ 0.968393  ],
       [ 0.9676121 ],
       [ 0.89679927],
       [ 0.6513553 ],
       [ 0.10605732],
       [-0.64180905],
       [ 0.65894264],
       [ 0.7933547 ],
       [ 0.79145634],
       [ 0.65189135],
       [ 0.30216578],
       [-0.29183832],
       [-0.89087164],
       [ 0.11673994],
       [ 0.30876532],
       [ 0.3058038 ],
       [ 0.10746255],
       [-0.2911624 ],
       [-0.7824271 ],
       [-0.99144876],
       [-0.63298166],
       [-0.4693114 ],
       [-0.4720572 ],
       [-0.64018184],
       [-0.89022875],
       [-0.9915408 ],
       [-0.59520555],
       [-0.9931624 ],
       [-0.9968113 ],
       [-0.9970547 ],
       [-0.9920292 ],
       [-0.8630818 ],
       [-0.42433563],
       [ 0.35684097],
       [-0.24874379],
       [-0.433408  ],
       [-0.43060133],
       [-0.23969026],
       [ 0.1603698 ],
       [ 0.6919434 ],
       [ 0.99999386],
       [ 0.90399957],
       [ 0.9701677 ],
       [ 0.9694085 ],
       [ 0.8999687 ],
       [ 0.65681386],
       [ 0.11323014],
       [-0.6362584 ],
       [ 0.9703388 ],
       [ 0.99888253],
       [ 0.9987306 ],
       [ 0.9680396 ],
       [ 0.7920624 ],
       [ 0.3060756 ],
       [-0.4724284 ],
       [ 0.9697545 ],
       [ 0.9987659 ],
       [ 0.99860656],
       [ 0.96743345],
       [ 0.7905917 ],
       [ 0.30378473],
       [-0.47454718],
       [ 0.9008909 ],
       [ 0.968393  ],
       [ 0.9676121 ],
       [ 0.89679927],
       [ 0.6513553 ],
       [ 0.10605732],
       [-0.64180905],
       [ 0.65894264],
       [ 0.7933547 ],
       [ 0.79145634],
       [ 0.65189135],
       [ 0.30216578],
       [-0.29183832],
       [-0.89087164],
       [ 0.11673994],
       [ 0.30876532],
       [ 0.3058038 ],
       [ 0.10746255],
       [-0.2911624 ],
       [-0.7824271 ],
       [-0.99144876],
       [-0.63298166],
       [-0.4693114 ],
       [-0.4720572 ],
       [-0.64018184],
       [-0.89022875],
       [-0.9915408 ],
       [-0.59520555],
       [-0.9931624 ],
       [-0.9968113 ],
       [-0.9970547 ],
       [-0.9920292 ],
       [-0.8630818 ],
       [-0.42433563],
       [ 0.35684097],
       [-0.24874379],
       [-0.433408  ],
       [-0.43060133],
       [-0.23969026],
       [ 0.1603698 ],
       [ 0.6919434 ],
       [ 0.99999386]], dtype=float32)}, 'dict_y': {'grad': array([[[ 0.03660799],
        [ 0.03672282],
        [ 0.00242864]],

       [[ 0.00794558],
        [ 0.01101691],
        [-0.00363774]],

       [[-0.0145126 ],
        [ 0.01041993],
        [-0.0058705 ]],

       [[-0.11913074],
        [ 0.02279373],
        [-0.02893628]],

       [[-0.37860408],
        [ 0.14354354],
        [-0.02052906]],

       [[-0.71849215],
        [ 0.25632265],
        [ 0.01564938]],

       [[-0.64401037],
        [ 0.16413349],
        [-0.00998644]],

       [[ 0.01090914],
        [ 0.00799957],
        [-0.00363211]],

       [[ 0.00398118],
        [ 0.00402855],
        [-0.00495128]],

       [[-0.00978757],
        [ 0.00407242],
        [-0.00753039]],

       [[-0.07850259],
        [ 0.008414  ],
        [-0.03733012]],

       [[-0.2478789 ],
        [ 0.03546919],
        [-0.06737386]],

       [[-0.698822  ],
        [ 0.08370544],
        [-0.03338963]],

       [[-0.6816126 ],
        [ 0.06690035],
        [-0.0208012 ]],

       [[ 0.01028006],
        [-0.01431685],
        [-0.00581483]],

       [[ 0.00400716],
        [-0.00968423],
        [-0.00746543]],

       [[-0.01242717],
        [-0.01234596],
        [-0.01123795]],

       [[-0.08541224],
        [-0.02982684],
        [-0.04437678]],

       [[-0.24903202],
        [-0.04918982],
        [-0.07020162]],

       [[-0.6948687 ],
        [-0.11240534],
        [-0.04837584]],

       [[-0.68451107],
        [-0.10588319],
        [-0.02707984]],

       [[ 0.02233659],
        [-0.11799974],
        [-0.02870509]],

       [[ 0.00819047],
        [-0.07792239],
        [-0.03707739]],

       [[-0.02995346],
        [-0.0850104 ],
        [-0.04423886]],

       [[-0.1244888 ],
        [-0.12416963],
        [-0.07555529]],

       [[-0.40818176],
        [-0.2407751 ],
        [-0.08608124]],

       [[-0.6794186 ],
        [-0.3301505 ],
        [-0.03868615]],

       [[-0.6350134 ],
        [-0.30126995],
        [-0.02177486]],

       [[ 0.15190239],
        [-0.3603599 ],
        [-0.01715907]],

       [[ 0.03928882],
        [-0.22801502],
        [-0.05831418]],

       [[-0.05320999],
        [-0.23101546],
        [-0.06128069]],

       [[-0.25168192],
        [-0.40253606],
        [-0.08371894]],

       [[-0.54534805],
        [-0.5473165 ],
        [-0.11714546]],

       [[-0.59783036],
        [-0.5037154 ],
        [ 0.01658146]],

       [[-0.44890627],
        [-0.30935532],
        [ 0.01225065]],

       [[ 0.21066092],
        [-0.78836477],
        [-0.01393795]],

       [[ 0.06443755],
        [-0.7890463 ],
        [-0.10111986]],

       [[-0.1166769 ],
        [-0.79306144],
        [-0.12475482]],

       [[-0.33065677],
        [-0.773893  ],
        [-0.1042592 ]],

       [[-0.44267026],
        [-0.6480644 ],
        [ 0.02817391]],

       [[-0.30296504],
        [-0.30884448],
        [ 0.12908377]],

       [[-0.08239152],
        [-0.02861992],
        [ 0.01908567]],

       [[ 0.21338458],
        [-0.6684397 ],
        [ 0.07024465]],

       [[ 0.06720471],
        [-0.71960574],
        [ 0.09505983]],

       [[-0.07913768],
        [-0.69596016],
        [ 0.09782002]],

       [[-0.16503659],
        [-0.48302385],
        [ 0.14275922]],

       [[-0.10120162],
        [-0.16506046],
        [ 0.10675696]],

       [[ 0.06225341],
        [ 0.05772779],
        [ 0.13090129]],

       [[ 0.1428359 ],
        [ 0.4145747 ],
        [ 0.14996956]],

       [[ 0.08067977],
        [ 0.0594435 ],
        [ 0.05430457]],

       [[ 0.02625935],
        [ 0.01043547],
        [ 0.09108698]],

       [[-0.0039487 ],
        [ 0.01311729],
        [ 0.09673483]],

       [[ 0.0060718 ],
        [ 0.09313556],
        [ 0.12217718]],

       [[ 0.21452244],
        [ 0.4589753 ],
        [ 0.29226795]],

       [[ 0.5019003 ],
        [ 0.9088921 ],
        [ 0.2768385 ]],

       [[ 0.8486474 ],
        [ 1.0834951 ],
        [-0.0217041 ]],

       [[-0.11952463],
        [ 0.46643674],
        [-0.01609043]],

       [[-0.02629815],
        [ 0.3143125 ],
        [ 0.01564448]],

       [[ 0.03764657],
        [ 0.3255213 ],
        [ 0.0224709 ]],

       [[ 0.26476744],
        [ 0.6290122 ],
        [ 0.0671479 ]],

       [[ 0.51366085],
        [ 1.2694535 ],
        [-0.02133743]],

       [[ 0.5031298 ],
        [ 0.8768861 ],
        [ 0.06487038]],

       [[ 0.18128802],
        [ 0.0664339 ],
        [ 0.05227932]],

       [[ 0.03660799],
        [ 0.03672282],
        [-0.00242864]],

       [[ 0.00794558],
        [ 0.01101691],
        [ 0.00363774]],

       [[-0.0145126 ],
        [ 0.01041993],
        [ 0.00587052]],

       [[-0.11913072],
        [ 0.02279373],
        [ 0.02893629]],

       [[-0.37860408],
        [ 0.14354354],
        [ 0.02052902]],

       [[-0.71849215],
        [ 0.25632265],
        [-0.01564948]],

       [[-0.64401037],
        [ 0.16413344],
        [ 0.00998632]],

       [[ 0.01090914],
        [ 0.00799957],
        [ 0.00363211]],

       [[ 0.00398118],
        [ 0.00402855],
        [ 0.00495129]],

       [[-0.00978757],
        [ 0.00407242],
        [ 0.00753039]],

       [[-0.07850259],
        [ 0.00841401],
        [ 0.03733012]],

       [[-0.24787886],
        [ 0.03546919],
        [ 0.06737385]],

       [[-0.6988221 ],
        [ 0.08370548],
        [ 0.03338947]],

       [[-0.6816126 ],
        [ 0.06690036],
        [ 0.02080114]],

       [[ 0.01028006],
        [-0.01431684],
        [ 0.00581483]],

       [[ 0.00400716],
        [-0.00968423],
        [ 0.00746544]],

       [[-0.01242717],
        [-0.01234596],
        [ 0.01123795]],

       [[-0.08541224],
        [-0.02982684],
        [ 0.04437677]],

       [[-0.24903202],
        [-0.04918982],
        [ 0.07020163]],

       [[-0.6948687 ],
        [-0.11240534],
        [ 0.04837588]],

       [[-0.6845111 ],
        [-0.10588319],
        [ 0.02707979]],

       [[ 0.02233659],
        [-0.11799974],
        [ 0.02870508]],

       [[ 0.00819047],
        [-0.0779224 ],
        [ 0.03707738]],

       [[-0.02995347],
        [-0.0850104 ],
        [ 0.04423887]],

       [[-0.12448881],
        [-0.12416963],
        [ 0.07555529]],

       [[-0.40818176],
        [-0.2407751 ],
        [ 0.0860812 ]],

       [[-0.6794186 ],
        [-0.33015054],
        [ 0.0386861 ]],

       [[-0.6350134 ],
        [-0.30126998],
        [ 0.02177478]],

       [[ 0.15190239],
        [-0.36035994],
        [ 0.01715906]],

       [[ 0.03928882],
        [-0.22801505],
        [ 0.05831417]],

       [[-0.05320998],
        [-0.23101544],
        [ 0.06128067]],

       [[-0.25168192],
        [-0.40253603],
        [ 0.0837189 ]],

       [[-0.545348  ],
        [-0.5473165 ],
        [ 0.11714539]],

       [[-0.59783036],
        [-0.50371534],
        [-0.01658149]],

       [[-0.44890627],
        [-0.30935532],
        [-0.01225062]],

       [[ 0.21066092],
        [-0.78836477],
        [ 0.01393789]],

       [[ 0.06443755],
        [-0.7890463 ],
        [ 0.10111979]],

       [[-0.11667688],
        [-0.79306144],
        [ 0.12475479]],

       [[-0.33065677],
        [-0.773893  ],
        [ 0.10425923]],

       [[-0.44267032],
        [-0.6480644 ],
        [-0.02817383]],

       [[-0.30296502],
        [-0.30884445],
        [-0.12908374]],

       [[-0.08239155],
        [-0.02861993],
        [-0.01908568]],

       [[ 0.21338461],
        [-0.6684397 ],
        [-0.07024468]],

       [[ 0.06720471],
        [-0.71960574],
        [-0.09505983]],

       [[-0.07913768],
        [-0.6959602 ],
        [-0.09782004]],

       [[-0.16503657],
        [-0.4830238 ],
        [-0.14275919]],

       [[-0.10120162],
        [-0.16506046],
        [-0.10675687]],

       [[ 0.06225341],
        [ 0.0577278 ],
        [-0.1309013 ]],

       [[ 0.1428359 ],
        [ 0.41457468],
        [-0.14996956]],

       [[ 0.08067978],
        [ 0.05944349],
        [-0.05430465]],

       [[ 0.02625935],
        [ 0.01043545],
        [-0.09108704]],

       [[-0.0039487 ],
        [ 0.01311729],
        [-0.09673485]],

       [[ 0.0060718 ],
        [ 0.09313556],
        [-0.12217716]],

       [[ 0.21452245],
        [ 0.4589753 ],
        [-0.29226798]],

       [[ 0.5019004 ],
        [ 0.9088921 ],
        [-0.27683857]],

       [[ 0.8486476 ],
        [ 1.0834953 ],
        [ 0.02170424]],

       [[-0.11952461],
        [ 0.46643668],
        [ 0.01609044]],

       [[-0.02629814],
        [ 0.31431246],
        [-0.0156445 ]],

       [[ 0.03764657],
        [ 0.32552123],
        [-0.02247086]],

       [[ 0.26476747],
        [ 0.6290123 ],
        [-0.06714789]],

       [[ 0.5136608 ],
        [ 1.2694535 ],
        [ 0.02133729]],

       [[ 0.5031298 ],
        [ 0.8768861 ],
        [-0.06487039]],

       [[ 0.18128805],
        [ 0.06643387],
        [-0.05227925]]], dtype=float32)}, 'original_shapes': array([[126]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/1'), 'inference_time': 0.0010097026824951172, 'inference_start_datetime': '2025-01-24_06-58-17.017657', 'dict_answer': {'grad': array([[[ 0.12692948],
        [ 0.12723158],
        [-0.        ]],

       [[ 0.02348897],
        [ 0.0721472 ],
        [-0.        ]],

       [[-0.02530913],
        [ 0.07304536],
        [-0.        ]],

       [[-0.1321431 ],
        [ 0.1297377 ],
        [-0.        ]],

       [[-0.37937304],
        [ 0.224402  ],
        [-0.        ]],

       [[-0.6985902 ],
        [ 0.29568067],
        [-0.        ]],

       [[-0.6967293 ],
        [ 0.22958705],
        [-0.        ]],

       [[ 0.07177233],
        [ 0.02359338],
        [-0.        ]],

       [[ 0.00457915],
        [ 0.00461254],
        [-0.        ]],

       [[-0.00519383],
        [ 0.0049159 ],
        [-0.        ]],

       [[-0.07601978],
        [ 0.02447648],
        [-0.        ]],

       [[-0.30711982],
        [ 0.05957564],
        [-0.        ]],

       [[-0.6693678 ],
        [ 0.09291072],
        [-0.        ]],

       [[-0.795975  ],
        [ 0.08601682],
        [-0.        ]],

       [[ 0.07246508],
        [-0.02499536],
        [-0.        ]],

       [[ 0.00481193],
        [-0.00508596],
        [-0.        ]],

       [[-0.00544153],
        [-0.00540423],
        [-0.        ]],

       [[-0.07672538],
        [-0.02592142],
        [-0.        ]],

       [[-0.30807748],
        [-0.06270732],
        [-0.        ]],

       [[-0.6698835 ],
        [-0.09756584],
        [-0.        ]],

       [[-0.79494643],
        [-0.09014035],
        [-0.        ]],

       [[ 0.12886292],
        [-0.13125777],
        [-0.        ]],

       [[ 0.02416668],
        [-0.07542875],
        [-0.        ]],

       [[-0.02602979],
        [-0.07633975],
        [-0.        ]],

       [[-0.13410819],
        [-0.13379554],
        [-0.        ]],

       [[-0.3817478 ],
        [-0.22945704],
        [-0.        ]],

       [[-0.69914657],
        [-0.3006999 ],
        [-0.        ]],

       [[-0.6925646 ],
        [-0.231904  ],
        [-0.        ]],

       [[ 0.22331707],
        [-0.37790594],
        [-0.        ]],

       [[ 0.05898146],
        [-0.30584416],
        [-0.        ]],

       [[-0.06302476],
        [-0.30708313],
        [-0.        ]],

       [[-0.22985366],
        [-0.38098025],
        [-0.        ]],

       [[-0.47959435],
        [-0.4789207 ],
        [-0.        ]],

       [[-0.67250395],
        [-0.48053455],
        [-0.        ]],

       [[-0.41024333],
        [-0.22822027],
        [-0.        ]],

       [[ 0.29485795],
        [-0.69760275],
        [-0.        ]],

       [[ 0.0921538 ],
        [-0.6680847 ],
        [-0.        ]],

       [[-0.09817246],
        [-0.66875637],
        [-0.        ]],

       [[-0.30135682],
        [-0.6983379 ],
        [-0.        ]],

       [[-0.4813141 ],
        [-0.67197275],
        [-0.        ]],

       [[-0.4378576 ],
        [-0.4374175 ],
        [-0.        ]],

       [[ 0.11785273],
        [ 0.09166127],
        [ 0.        ]],

       [[ 0.22984074],
        [-0.6986123 ],
        [-0.        ]],

       [[ 0.0855552 ],
        [-0.79685354],
        [-0.        ]],

       [[-0.09090031],
        [-0.79553163],
        [-0.        ]],

       [[-0.23285781],
        [-0.693249  ],
        [-0.        ]],

       [[-0.22917451],
        [-0.41105813],
        [-0.        ]],

       [[ 0.09126085],
        [ 0.11712825],
        [ 0.        ]],

       [[ 0.72571695],
        [ 0.7251491 ],
        [ 0.        ]],

       [[-0.03465899],
        [ 0.12869594],
        [ 0.        ]],

       [[ 0.00773119],
        [-0.08796662],
        [-0.        ]],

       [[-0.00790794],
        [-0.08454636],
        [-0.        ]],

       [[ 0.03819462],
        [ 0.13891216],
        [ 0.        ]],

       [[ 0.25410384],
        [ 0.55678535],
        [ 0.        ]],

       [[ 0.6366715 ],
        [ 0.9982336 ],
        [ 0.        ]],

       [[ 0.8436558 ],
        [ 1.0298288 ],
        [ 0.        ]],

       [[-0.28755653],
        [ 1.26147   ],
        [ 0.        ]],

       [[-0.08731517],
        [ 1.1737249 ],
        [ 0.        ]],

       [[ 0.09306302],
        [ 1.175476  ],
        [ 0.        ]],

       [[ 0.2942762 ],
        [ 1.2644396 ],
        [ 0.        ]],

       [[ 0.4966003 ],
        [ 1.2855484 ],
        [ 0.        ]],

       [[ 0.50761306],
        [ 0.9402739 ],
        [ 0.        ]],

       [[ 0.00316707],
        [ 0.00456733],
        [ 0.        ]],

       [[ 0.12692948],
        [ 0.12723158],
        [-0.        ]],

       [[ 0.02348897],
        [ 0.0721472 ],
        [-0.        ]],

       [[-0.02530913],
        [ 0.07304536],
        [-0.        ]],

       [[-0.1321431 ],
        [ 0.1297377 ],
        [-0.        ]],

       [[-0.37937304],
        [ 0.224402  ],
        [-0.        ]],

       [[-0.6985902 ],
        [ 0.29568067],
        [-0.        ]],

       [[-0.6967293 ],
        [ 0.22958705],
        [-0.        ]],

       [[ 0.07177233],
        [ 0.02359338],
        [-0.        ]],

       [[ 0.00457915],
        [ 0.00461254],
        [-0.        ]],

       [[-0.00519383],
        [ 0.0049159 ],
        [-0.        ]],

       [[-0.07601978],
        [ 0.02447648],
        [-0.        ]],

       [[-0.30711982],
        [ 0.05957564],
        [-0.        ]],

       [[-0.6693678 ],
        [ 0.09291072],
        [-0.        ]],

       [[-0.795975  ],
        [ 0.08601682],
        [-0.        ]],

       [[ 0.07246508],
        [-0.02499536],
        [-0.        ]],

       [[ 0.00481193],
        [-0.00508596],
        [-0.        ]],

       [[-0.00544153],
        [-0.00540423],
        [-0.        ]],

       [[-0.07672538],
        [-0.02592142],
        [-0.        ]],

       [[-0.30807748],
        [-0.06270732],
        [-0.        ]],

       [[-0.6698835 ],
        [-0.09756584],
        [-0.        ]],

       [[-0.79494643],
        [-0.09014035],
        [-0.        ]],

       [[ 0.12886292],
        [-0.13125777],
        [-0.        ]],

       [[ 0.02416668],
        [-0.07542875],
        [-0.        ]],

       [[-0.02602979],
        [-0.07633975],
        [-0.        ]],

       [[-0.13410819],
        [-0.13379554],
        [-0.        ]],

       [[-0.3817478 ],
        [-0.22945704],
        [-0.        ]],

       [[-0.69914657],
        [-0.3006999 ],
        [-0.        ]],

       [[-0.6925646 ],
        [-0.231904  ],
        [-0.        ]],

       [[ 0.22331707],
        [-0.37790594],
        [-0.        ]],

       [[ 0.05898146],
        [-0.30584416],
        [-0.        ]],

       [[-0.06302476],
        [-0.30708313],
        [-0.        ]],

       [[-0.22985366],
        [-0.38098025],
        [-0.        ]],

       [[-0.47959435],
        [-0.4789207 ],
        [-0.        ]],

       [[-0.67250395],
        [-0.48053455],
        [-0.        ]],

       [[-0.41024333],
        [-0.22822027],
        [-0.        ]],

       [[ 0.29485795],
        [-0.69760275],
        [-0.        ]],

       [[ 0.0921538 ],
        [-0.6680847 ],
        [-0.        ]],

       [[-0.09817246],
        [-0.66875637],
        [-0.        ]],

       [[-0.30135682],
        [-0.6983379 ],
        [-0.        ]],

       [[-0.4813141 ],
        [-0.67197275],
        [-0.        ]],

       [[-0.4378576 ],
        [-0.4374175 ],
        [-0.        ]],

       [[ 0.11785273],
        [ 0.09166127],
        [ 0.        ]],

       [[ 0.22984074],
        [-0.6986123 ],
        [-0.        ]],

       [[ 0.0855552 ],
        [-0.79685354],
        [-0.        ]],

       [[-0.09090031],
        [-0.79553163],
        [-0.        ]],

       [[-0.23285781],
        [-0.693249  ],
        [-0.        ]],

       [[-0.22917451],
        [-0.41105813],
        [-0.        ]],

       [[ 0.09126085],
        [ 0.11712825],
        [ 0.        ]],

       [[ 0.72571695],
        [ 0.7251491 ],
        [ 0.        ]],

       [[-0.03465899],
        [ 0.12869594],
        [ 0.        ]],

       [[ 0.00773119],
        [-0.08796662],
        [-0.        ]],

       [[-0.00790794],
        [-0.08454636],
        [-0.        ]],

       [[ 0.03819462],
        [ 0.13891216],
        [ 0.        ]],

       [[ 0.25410384],
        [ 0.55678535],
        [ 0.        ]],

       [[ 0.6366715 ],
        [ 0.9982336 ],
        [ 0.        ]],

       [[ 0.8436558 ],
        [ 1.0298288 ],
        [ 0.        ]],

       [[-0.28755653],
        [ 1.26147   ],
        [ 0.        ]],

       [[-0.08731517],
        [ 1.1737249 ],
        [ 0.        ]],

       [[ 0.09306302],
        [ 1.175476  ],
        [ 0.        ]],

       [[ 0.2942762 ],
        [ 1.2644396 ],
        [ 0.        ]],

       [[ 0.4966003 ],
        [ 1.2855484 ],
        [ 0.        ]],

       [[ 0.50761306],
        [ 0.9402739 ],
        [ 0.        ]],

       [[ 0.00316707],
        [ 0.00456733],
        [ 0.        ]]], dtype=float32)}, 'loss': 0.15591129660606384, 'raw_loss': 0.021002791821956635, 'output_directory': PosixPath('00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/1'), 'fem_data': <femio.fem_data.FEMData object at 0x7f37edbea3d0>}, {'dict_x': {'phi': array([[-0.7219605 ],
       [ 0.05667048],
       [ 0.65940964],
       [ 0.92588276],
       [ 0.9923096 ],
       [ 0.9981543 ],
       [ 0.98057306],
       [ 0.8607261 ],
       [ 0.4794488 ],
       [-0.6853607 ],
       [ 0.10802213],
       [ 0.6972583 ],
       [ 0.9441145 ],
       [ 0.9973682 ],
       [ 0.9999574 ],
       [ 0.9893752 ],
       [ 0.8858054 ],
       [ 0.52401567],
       [-0.7855388 ],
       [-0.04022338],
       [ 0.5835538 ],
       [ 0.8849703 ],
       [ 0.9756713 ],
       [ 0.98759085],
       [ 0.9569853 ],
       [ 0.807416  ],
       [ 0.39226386],
       [-0.94962394],
       [-0.3789874 ],
       [ 0.27119127],
       [ 0.672782  ],
       [ 0.84216994],
       [ 0.8746082 ],
       [ 0.80039835],
       [ 0.55743384],
       [ 0.0545967 ],
       [-0.97373354],
       [-0.8058853 ],
       [-0.27042755],
       [ 0.18836309],
       [ 0.4375097 ],
       [ 0.4935437 ],
       [ 0.3704485 ],
       [ 0.04281097],
       [-0.47401384],
       [-0.5585391 ],
       [-0.9934131 ],
       [-0.8533119 ],
       [-0.5303153 ],
       [-0.2913523 ],
       [-0.23022406],
       [-0.36066028],
       [-0.6485237 ],
       [-0.94653213],
       [ 0.3483816 ],
       [-0.48598364],
       [-0.92107034],
       [-0.9979936 ],
       [-0.9471102 ],
       [-0.9249011 ],
       [-0.9680774 ],
       [-0.99653137],
       [-0.81388867],
       [ 0.9977907 ],
       [ 0.5979807 ],
       [-0.02235106],
       [-0.46681437],
       [-0.68091947],
       [-0.72590524],
       [-0.6254295 ],
       [-0.33255747],
       [ 0.19636925],
       [ 0.2848151 ],
       [ 0.91363835],
       [ 0.9702144 ],
       [ 0.759655  ],
       [ 0.5641886 ],
       [ 0.51080245],
       [ 0.62316704],
       [ 0.84654105],
       [ 0.9996956 ],
       [-0.9519844 ],
       [-0.38602784],
       [ 0.26384902],
       [ 0.667125  ],
       [ 0.8380367 ],
       [ 0.8708885 ],
       [ 0.7958072 ],
       [ 0.55109143],
       [ 0.04698656],
       [-0.7219605 ],
       [ 0.05667048],
       [ 0.65940964],
       [ 0.92588276],
       [ 0.9923096 ],
       [ 0.9981543 ],
       [ 0.98057306],
       [ 0.8607261 ],
       [ 0.4794488 ],
       [-0.6853607 ],
       [ 0.10802213],
       [ 0.6972583 ],
       [ 0.9441145 ],
       [ 0.9973682 ],
       [ 0.9999574 ],
       [ 0.9893752 ],
       [ 0.8858054 ],
       [ 0.52401567],
       [-0.7855388 ],
       [-0.04022338],
       [ 0.5835538 ],
       [ 0.8849703 ],
       [ 0.9756713 ],
       [ 0.98759085],
       [ 0.9569853 ],
       [ 0.807416  ],
       [ 0.39226386],
       [-0.94962394],
       [-0.3789874 ],
       [ 0.27119127],
       [ 0.672782  ],
       [ 0.84216994],
       [ 0.8746082 ],
       [ 0.80039835],
       [ 0.55743384],
       [ 0.0545967 ],
       [-0.97373354],
       [-0.8058853 ],
       [-0.27042755],
       [ 0.18836309],
       [ 0.4375097 ],
       [ 0.4935437 ],
       [ 0.3704485 ],
       [ 0.04281097],
       [-0.47401384],
       [-0.5585391 ],
       [-0.9934131 ],
       [-0.8533119 ],
       [-0.5303153 ],
       [-0.2913523 ],
       [-0.23022406],
       [-0.36066028],
       [-0.6485237 ],
       [-0.94653213],
       [ 0.3483816 ],
       [-0.48598364],
       [-0.92107034],
       [-0.9979936 ],
       [-0.9471102 ],
       [-0.9249011 ],
       [-0.9680774 ],
       [-0.99653137],
       [-0.81388867],
       [ 0.9977907 ],
       [ 0.5979807 ],
       [-0.02235106],
       [-0.46681437],
       [-0.68091947],
       [-0.72590524],
       [-0.6254295 ],
       [-0.33255747],
       [ 0.19636925],
       [ 0.2848151 ],
       [ 0.91363835],
       [ 0.9702144 ],
       [ 0.759655  ],
       [ 0.5641886 ],
       [ 0.51080245],
       [ 0.62316704],
       [ 0.84654105],
       [ 0.9996956 ],
       [-0.9519844 ],
       [-0.38602784],
       [ 0.26384902],
       [ 0.667125  ],
       [ 0.8380367 ],
       [ 0.8708885 ],
       [ 0.7958072 ],
       [ 0.55109143],
       [ 0.04698656]], dtype=float32)}, 'dict_y': {'grad': array([[[ 6.89869583e-01],
        [ 1.81552786e-02],
        [-5.29988576e-03]],

       [[ 7.45627880e-01],
        [ 7.83382729e-02],
        [ 1.69732999e-02]],

       [[ 4.29430068e-01],
        [ 2.10973285e-02],
        [-2.14700922e-02]],

       [[ 1.34479284e-01],
        [-2.65219640e-02],
        [-3.00468039e-02]],

       [[ 1.80117767e-02],
        [-4.75980947e-03],
        [-5.20028826e-03]],

       [[-2.42357072e-03],
        [-8.27615906e-04],
        [-1.56853860e-03]],

       [[-3.61224562e-02],
        [-8.26692861e-03],
        [-9.42747202e-03]],

       [[-2.03348219e-01],
        [-2.40962449e-02],
        [-3.59374136e-02]],

       [[-6.52055442e-01],
        [ 6.01997562e-02],
        [ 1.56675943e-03]],

       [[ 6.86603069e-01],
        [-8.56759325e-02],
        [-1.77820940e-02]],

       [[ 7.33520091e-01],
        [-8.36478993e-02],
        [-2.46651135e-02]],

       [[ 4.02243227e-01],
        [-5.76523915e-02],
        [-7.06057921e-02]],

       [[ 1.29840761e-01],
        [-3.62994932e-02],
        [-5.44395223e-02]],

       [[ 2.14586053e-02],
        [-1.20814582e-02],
        [-1.20185958e-02]],

       [[-3.28015396e-03],
        [-7.25840032e-03],
        [-4.71623708e-03]],

       [[-3.92955095e-02],
        [-1.70434192e-02],
        [-1.95038244e-02]],

       [[-1.82664320e-01],
        [-4.41242903e-02],
        [-6.97130412e-02]],

       [[-5.90026200e-01],
        [-6.88092411e-02],
        [-2.78765876e-02]],

       [[ 6.18637621e-01],
        [-2.24091589e-01],
        [-1.43331960e-02]],

       [[ 7.16313004e-01],
        [-2.67979205e-01],
        [-2.31501684e-02]],

       [[ 5.23430169e-01],
        [-2.23925784e-01],
        [-9.54581574e-02]],

       [[ 1.51320204e-01],
        [-1.00229986e-01],
        [-7.54719749e-02]],

       [[ 4.10657972e-02],
        [-6.23048171e-02],
        [-3.80448215e-02]],

       [[-7.11225253e-03],
        [-4.86989096e-02],
        [-2.69321091e-02]],

       [[-7.14430436e-02],
        [-7.87858218e-02],
        [-5.00233471e-02]],

       [[-2.22695351e-01],
        [-1.24502704e-01],
        [-8.23342279e-02]],

       [[-6.52519345e-01],
        [-2.66047090e-01],
        [-2.24722698e-02]],

       [[ 3.54784518e-01],
        [-1.89275324e-01],
        [ 9.70555842e-03]],

       [[ 6.33755088e-01],
        [-4.33763117e-01],
        [ 3.42726782e-02]],

       [[ 6.12997293e-01],
        [-4.88570035e-01],
        [-1.14226222e-01]],

       [[ 2.82994598e-01],
        [-3.40533614e-01],
        [-7.99115300e-02]],

       [[ 6.96384832e-02],
        [-1.80710003e-01],
        [-6.52967617e-02]],

       [[-1.43873440e-02],
        [-1.77947864e-01],
        [-6.90357089e-02]],

       [[-1.22852169e-01],
        [-2.02106148e-01],
        [-6.69028834e-02]],

       [[-3.91417593e-01],
        [-4.01217997e-01],
        [-7.49076605e-02]],

       [[-6.41160011e-01],
        [-4.84843940e-01],
        [-1.36291776e-02]],

       [[ 4.66883108e-02],
        [-3.56728327e-03],
        [ 1.74221788e-02]],

       [[ 3.01284164e-01],
        [-2.61397690e-01],
        [ 1.24764211e-01]],

       [[ 5.06183445e-01],
        [-6.07667327e-01],
        [ 2.05242094e-02]],

       [[ 3.99137884e-01],
        [-7.23934472e-01],
        [-1.15285017e-01]],

       [[ 1.74248695e-01],
        [-7.11199880e-01],
        [-1.18060932e-01]],

       [[-3.73379886e-02],
        [-6.92389548e-01],
        [-1.09258331e-01]],

       [[-2.57072300e-01],
        [-7.18080938e-01],
        [-1.22443587e-01]],

       [[-4.05317158e-01],
        [-6.94644988e-01],
        [-5.74395880e-02]],

       [[-4.47752237e-01],
        [-6.15259171e-01],
        [-1.44934207e-02]],

       [[-1.79436252e-01],
        [ 4.00127143e-01],
        [ 1.38361990e-01]],

       [[-6.39306605e-02],
        [ 2.01294888e-02],
        [ 1.14267036e-01]],

       [[ 1.43892795e-01],
        [-2.07143322e-01],
        [ 1.15234256e-01]],

       [[ 2.39877105e-01],
        [-5.75309873e-01],
        [ 1.21955343e-01]],

       [[ 1.43649027e-01],
        [-7.88790941e-01],
        [ 2.03795433e-02]],

       [[-3.36654969e-02],
        [-8.24272335e-01],
        [-6.88850135e-03]],

       [[-1.89845100e-01],
        [-7.42481351e-01],
        [ 5.45153804e-02]],

       [[-2.55428821e-01],
        [-5.28765440e-01],
        [ 1.32468283e-01]],

       [[-2.46306047e-01],
        [-2.51038074e-01],
        [ 5.03367037e-02]],

       [[-8.52720857e-01],
        [ 1.00414681e+00],
        [-2.84323506e-02]],

       [[-5.17276525e-01],
        [ 8.78586888e-01],
        [ 2.52965093e-01]],

       [[-2.47513920e-01],
        [ 5.29817641e-01],
        [ 3.25370163e-01]],

       [[-9.50918719e-03],
        [-6.52734786e-02],
        [ 5.58638908e-02]],

       [[ 2.51883157e-02],
        [-1.88485354e-01],
        [ 3.89599502e-02]],

       [[-7.21842237e-03],
        [-2.09406331e-01],
        [ 4.84117605e-02]],

       [[-2.10589301e-02],
        [-1.55924469e-01],
        [ 3.55695821e-02]],

       [[ 4.16460484e-02],
        [-2.60502473e-03],
        [ 8.76351818e-02]],

       [[ 4.84210951e-03],
        [ 2.46425554e-01],
        [ 1.19372673e-01]],

       [[-9.32855681e-02],
        [-1.13024421e-01],
        [ 2.84331832e-02]],

       [[-3.64510149e-01],
        [ 6.73903465e-01],
        [-1.31731749e-01]],

       [[-3.97365004e-01],
        [ 1.10854113e+00],
        [ 1.88571990e-01]],

       [[-2.67216563e-01],
        [ 1.06848359e+00],
        [ 2.67714918e-01]],

       [[-1.00342281e-01],
        [ 9.76159692e-01],
        [ 2.65117377e-01]],

       [[ 2.05381066e-02],
        [ 9.56972241e-01],
        [ 2.73245364e-01]],

       [[ 1.52937233e-01],
        [ 1.00700235e+00],
        [ 2.60890424e-01]],

       [[ 2.61962533e-01],
        [ 1.12003696e+00],
        [ 2.49453500e-01]],

       [[ 4.26487327e-01],
        [ 1.19830728e+00],
        [ 1.63847376e-02]],

       [[ 5.84362924e-01],
        [-5.90134680e-01],
        [ 1.15916692e-01]],

       [[-1.09585980e-03],
        [ 2.85688657e-02],
        [-7.20144957e-02]],

       [[-6.29821792e-02],
        [ 1.38975866e-02],
        [-3.31356120e-03]],

       [[-1.36848152e-01],
        [ 3.61159354e-01],
        [-1.60667628e-01]],

       [[-7.57300109e-02],
        [ 8.04115951e-01],
        [-1.49863467e-01]],

       [[ 1.56351514e-02],
        [ 8.89925063e-01],
        [-1.37511104e-01]],

       [[ 1.13814622e-01],
        [ 6.94162488e-01],
        [-1.56968862e-01]],

       [[ 1.59010693e-01],
        [ 1.41733229e-01],
        [-1.37503371e-01]],

       [[ 7.58470371e-02],
        [-1.59833997e-01],
        [ 3.04040816e-02]],

       [[ 5.35625279e-01],
        [-9.62246835e-01],
        [-8.75654593e-02]],

       [[ 4.62192714e-01],
        [-1.52672756e+00],
        [ 3.48181697e-03]],

       [[ 1.52448103e-01],
        [-1.20814908e+00],
        [ 5.14280610e-02]],

       [[ 6.70538694e-02],
        [-8.17356557e-02],
        [-8.51585567e-02]],

       [[ 1.61312521e-03],
        [ 1.59172013e-01],
        [-1.85964778e-02]],

       [[-1.05025787e-02],
        [ 3.31390649e-02],
        [-1.91800613e-02]],

       [[ 3.77010964e-02],
        [ 2.65985638e-01],
        [-3.31012867e-02]],

       [[-5.65985776e-02],
        [-5.45758247e-01],
        [ 2.75505818e-02]],

       [[-3.53991568e-01],
        [-1.40154052e+00],
        [ 1.02591865e-01]],

       [[ 6.89869583e-01],
        [ 1.81552749e-02],
        [ 5.29980613e-03]],

       [[ 7.45627880e-01],
        [ 7.83381984e-02],
        [-1.69733390e-02]],

       [[ 4.29430097e-01],
        [ 2.10972987e-02],
        [ 2.14700755e-02]],

       [[ 1.34479284e-01],
        [-2.65219659e-02],
        [ 3.00468169e-02]],

       [[ 1.80117749e-02],
        [-4.75980621e-03],
        [ 5.20029152e-03]],

       [[-2.42357096e-03],
        [-8.27616779e-04],
        [ 1.56852941e-03]],

       [[-3.61224562e-02],
        [-8.26693140e-03],
        [ 9.42746829e-03]],

       [[-2.03348219e-01],
        [-2.40962468e-02],
        [ 3.59374136e-02]],

       [[-6.52055442e-01],
        [ 6.01997562e-02],
        [-1.56677770e-03]],

       [[ 6.86603010e-01],
        [-8.56759325e-02],
        [ 1.77820250e-02]],

       [[ 7.33520091e-01],
        [-8.36478621e-02],
        [ 2.46649571e-02]],

       [[ 4.02243227e-01],
        [-5.76523915e-02],
        [ 7.06057921e-02]],

       [[ 1.29840761e-01],
        [-3.62994857e-02],
        [ 5.44395186e-02]],

       [[ 2.14586072e-02],
        [-1.20814573e-02],
        [ 1.20185846e-02]],

       [[-3.28015303e-03],
        [-7.25839846e-03],
        [ 4.71623335e-03]],

       [[-3.92955095e-02],
        [-1.70434173e-02],
        [ 1.95038188e-02]],

       [[-1.82664320e-01],
        [-4.41242829e-02],
        [ 6.97130188e-02]],

       [[-5.90026200e-01],
        [-6.88092411e-02],
        [ 2.78765764e-02]],

       [[ 6.18637621e-01],
        [-2.24091560e-01],
        [ 1.43331839e-02]],

       [[ 7.16313004e-01],
        [-2.67979205e-01],
        [ 2.31500920e-02]],

       [[ 5.23430049e-01],
        [-2.23925784e-01],
        [ 9.54581574e-02]],

       [[ 1.51320189e-01],
        [-1.00229986e-01],
        [ 7.54719749e-02]],

       [[ 4.10657972e-02],
        [-6.23048171e-02],
        [ 3.80448103e-02]],

       [[-7.11225253e-03],
        [-4.86989096e-02],
        [ 2.69321222e-02]],

       [[-7.14430436e-02],
        [-7.87858292e-02],
        [ 5.00233583e-02]],

       [[-2.22695351e-01],
        [-1.24502726e-01],
        [ 8.23342428e-02]],

       [[-6.52519405e-01],
        [-2.66047090e-01],
        [ 2.24722307e-02]],

       [[ 3.54784518e-01],
        [-1.89275309e-01],
        [-9.70560033e-03]],

       [[ 6.33755088e-01],
        [-4.33763117e-01],
        [-3.42726596e-02]],

       [[ 6.12997234e-01],
        [-4.88570035e-01],
        [ 1.14226334e-01]],

       [[ 2.82994568e-01],
        [-3.40533644e-01],
        [ 7.99115822e-02]],

       [[ 6.96384832e-02],
        [-1.80709973e-01],
        [ 6.52967766e-02]],

       [[-1.43873440e-02],
        [-1.77947864e-01],
        [ 6.90357089e-02]],

       [[-1.22852154e-01],
        [-2.02106163e-01],
        [ 6.69028759e-02]],

       [[-3.91417623e-01],
        [-4.01217908e-01],
        [ 7.49076456e-02]],

       [[-6.41160011e-01],
        [-4.84843880e-01],
        [ 1.36291496e-02]],

       [[ 4.66883108e-02],
        [-3.56729561e-03],
        [-1.74221713e-02]],

       [[ 3.01284134e-01],
        [-2.61397690e-01],
        [-1.24764204e-01]],

       [[ 5.06183445e-01],
        [-6.07667327e-01],
        [-2.05241982e-02]],

       [[ 3.99137884e-01],
        [-7.23934531e-01],
        [ 1.15284920e-01]],

       [[ 1.74248695e-01],
        [-7.11199760e-01],
        [ 1.18060991e-01]],

       [[-3.73379886e-02],
        [-6.92389488e-01],
        [ 1.09258331e-01]],

       [[-2.57072300e-01],
        [-7.18080938e-01],
        [ 1.22443654e-01]],

       [[-4.05317187e-01],
        [-6.94644928e-01],
        [ 5.74395880e-02]],

       [[-4.47752327e-01],
        [-6.15259171e-01],
        [ 1.44933602e-02]],

       [[-1.79436237e-01],
        [ 4.00127143e-01],
        [-1.38362080e-01]],

       [[-6.39306456e-02],
        [ 2.01294813e-02],
        [-1.14267036e-01]],

       [[ 1.43892810e-01],
        [-2.07143366e-01],
        [-1.15234308e-01]],

       [[ 2.39877105e-01],
        [-5.75309873e-01],
        [-1.21955320e-01]],

       [[ 1.43649012e-01],
        [-7.88790941e-01],
        [-2.03794278e-02]],

       [[-3.36655006e-02],
        [-8.24272335e-01],
        [ 6.88854372e-03]],

       [[-1.89845100e-01],
        [-7.42481351e-01],
        [-5.45153096e-02]],

       [[-2.55428821e-01],
        [-5.28765440e-01],
        [-1.32468268e-01]],

       [[-2.46306077e-01],
        [-2.51038104e-01],
        [-5.03367297e-02]],

       [[-8.52720857e-01],
        [ 1.00414681e+00],
        [ 2.84324903e-02]],

       [[-5.17276525e-01],
        [ 8.78586888e-01],
        [-2.52965122e-01]],

       [[-2.47513920e-01],
        [ 5.29817581e-01],
        [-3.25370193e-01]],

       [[-9.50918533e-03],
        [-6.52735084e-02],
        [-5.58638312e-02]],

       [[ 2.51883212e-02],
        [-1.88485354e-01],
        [-3.89599800e-02]],

       [[-7.21842190e-03],
        [-2.09406331e-01],
        [-4.84118313e-02]],

       [[-2.10589338e-02],
        [-1.55924469e-01],
        [-3.55695784e-02]],

       [[ 4.16460410e-02],
        [-2.60499446e-03],
        [-8.76352414e-02]],

       [[ 4.84210812e-03],
        [ 2.46425554e-01],
        [-1.19372651e-01]],

       [[-9.32855532e-02],
        [-1.13024406e-01],
        [-2.84331217e-02]],

       [[-3.64510208e-01],
        [ 6.73903465e-01],
        [ 1.31731793e-01]],

       [[-3.97365004e-01],
        [ 1.10854113e+00],
        [-1.88572213e-01]],

       [[-2.67216593e-01],
        [ 1.06848359e+00],
        [-2.67714888e-01]],

       [[-1.00342304e-01],
        [ 9.76159692e-01],
        [-2.65117317e-01]],

       [[ 2.05380972e-02],
        [ 9.56972301e-01],
        [-2.73245394e-01]],

       [[ 1.52937263e-01],
        [ 1.00700235e+00],
        [-2.60890543e-01]],

       [[ 2.61962533e-01],
        [ 1.12003696e+00],
        [-2.49453455e-01]],

       [[ 4.26487327e-01],
        [ 1.19830728e+00],
        [-1.63846407e-02]],

       [[ 5.84362864e-01],
        [-5.90134680e-01],
        [-1.15916692e-01]],

       [[-1.09587889e-03],
        [ 2.85688061e-02],
        [ 7.20145628e-02]],

       [[-6.29821718e-02],
        [ 1.38975624e-02],
        [ 3.31349554e-03]],

       [[-1.36848137e-01],
        [ 3.61159354e-01],
        [ 1.60667658e-01]],

       [[-7.57300332e-02],
        [ 8.04116011e-01],
        [ 1.49863422e-01]],

       [[ 1.56351402e-02],
        [ 8.89925063e-01],
        [ 1.37511015e-01]],

       [[ 1.13814637e-01],
        [ 6.94162428e-01],
        [ 1.56968758e-01]],

       [[ 1.59010693e-01],
        [ 1.41733244e-01],
        [ 1.37503386e-01]],

       [[ 7.58469999e-02],
        [-1.59834012e-01],
        [-3.04040294e-02]],

       [[ 5.35625041e-01],
        [-9.62246835e-01],
        [ 8.75653625e-02]],

       [[ 4.62192774e-01],
        [-1.52672803e+00],
        [-3.48221068e-03]],

       [[ 1.52448133e-01],
        [-1.20814908e+00],
        [-5.14281355e-02]],

       [[ 6.70538694e-02],
        [-8.17356482e-02],
        [ 8.51585642e-02]],

       [[ 1.61312311e-03],
        [ 1.59172013e-01],
        [ 1.85964704e-02]],

       [[-1.05025843e-02],
        [ 3.31390873e-02],
        [ 1.91800259e-02]],

       [[ 3.77011076e-02],
        [ 2.65985668e-01],
        [ 3.31012867e-02]],

       [[-5.65985739e-02],
        [-5.45758307e-01],
        [-2.75505930e-02]],

       [[-3.53991568e-01],
        [-1.40154052e+00],
        [-1.02591872e-01]]], dtype=float32)}, 'original_shapes': array([[180]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/2'), 'inference_time': 0.001207113265991211, 'inference_start_datetime': '2025-01-24_06-58-17.017657', 'dict_answer': {'grad': array([[[ 6.66562676e-01],
        [ 1.04850516e-01],
        [-0.00000000e+00]],

       [[ 7.62105525e-01],
        [ 1.51288927e-01],
        [-0.00000000e+00]],

       [[ 4.23504144e-01],
        [ 1.13919668e-01],
        [-0.00000000e+00]],

       [[ 1.37270942e-01],
        [ 5.72506376e-02],
        [-0.00000000e+00]],

       [[ 2.02173404e-02],
        [ 1.87567584e-02],
        [-0.00000000e+00]],

       [[-2.22680159e-03],
        [ 9.20243375e-03],
        [-0.00000000e+00]],

       [[-4.64233570e-02],
        [ 2.97237132e-02],
        [-0.00000000e+00]],

       [[-2.22293749e-01],
        [ 7.71403760e-02],
        [-0.00000000e+00]],

       [[-5.58720410e-01],
        [ 1.32980317e-01],
        [-0.00000000e+00]],

       [[ 7.01502144e-01],
        [-3.52942497e-02],
        [-0.00000000e+00]],

       [[ 7.58865595e-01],
        [-4.81839404e-02],
        [-0.00000000e+00]],

       [[ 4.03807789e-01],
        [-3.47425081e-02],
        [-0.00000000e+00]],

       [[ 1.19760707e-01],
        [-1.59757584e-02],
        [-0.00000000e+00]],

       [[ 1.18420171e-02],
        [-3.51402466e-03],
        [-0.00000000e+00]],

       [[-3.38587939e-04],
        [-4.47546423e-04],
        [-0.00000000e+00]],

       [[-3.44078839e-02],
        [-7.04644248e-03],
        [-0.00000000e+00]],

       [[-2.02638671e-01],
        [-2.24916991e-02],
        [-0.00000000e+00]],

       [[-5.42255461e-01],
        [-4.12802286e-02],
        [-0.00000000e+00]],

       [[ 5.96121848e-01],
        [-1.53754786e-01],
        [-0.00000000e+00]],

       [[ 7.62714505e-01],
        [-2.48266473e-01],
        [-0.00000000e+00]],

       [[ 4.57467735e-01],
        [-2.01774165e-01],
        [-0.00000000e+00]],

       [[ 1.69184729e-01],
        [-1.15698285e-01],
        [-0.00000000e+00]],

       [[ 3.58087048e-02],
        [-5.44736385e-02],
        [-0.00000000e+00]],

       [[-5.75862778e-03],
        [-3.90215218e-02],
        [-0.00000000e+00]],

       [[-6.86659366e-02],
        [-7.20894858e-02],
        [-0.00000000e+00]],

       [[-2.57626325e-01],
        [-1.46591499e-01],
        [-0.00000000e+00]],

       [[-5.85640609e-01],
        [-2.28553563e-01],
        [-0.00000000e+00]],

       [[ 3.01900089e-01],
        [-1.40545905e-01],
        [-0.00000000e+00]],

       [[ 7.06389070e-01],
        [-4.15012687e-01],
        [-0.00000000e+00]],

       [[ 5.42221606e-01],
        [-4.31661427e-01],
        [-0.00000000e+00]],

       [[ 2.68808007e-01],
        [-3.31794560e-01],
        [-0.00000000e+00]],

       [[ 8.80707353e-02],
        [-2.41819173e-01],
        [-0.00000000e+00]],

       [[-1.77776460e-02],
        [-2.17430666e-01],
        [-0.00000000e+00]],

       [[-1.41874880e-01],
        [-2.68842191e-01],
        [-0.00000000e+00]],

       [[-3.62530917e-01],
        [-3.72327358e-01],
        [-0.00000000e+00]],

       [[-6.35718167e-01],
        [-4.47798610e-01],
        [-0.00000000e+00]],

       [[-2.19341606e-01],
        [ 1.47649914e-01],
        [ 0.00000000e+00]],

       [[ 4.51947331e-01],
        [-3.83939207e-01],
        [-0.00000000e+00]],

       [[ 5.42342663e-01],
        [-6.24305844e-01],
        [-0.00000000e+00]],

       [[ 3.56828392e-01],
        [-6.36859655e-01],
        [-0.00000000e+00]],

       [[ 1.46870583e-01],
        [-5.83110929e-01],
        [-0.00000000e+00]],

       [[-3.18907276e-02],
        [-5.63985825e-01],
        [-0.00000000e+00]],

       [[-2.19829559e-01],
        [-6.02331042e-01],
        [-0.00000000e+00]],

       [[-4.36267436e-01],
        [-6.47873044e-01],
        [-0.00000000e+00]],

       [[-5.60597062e-01],
        [-5.70986986e-01],
        [-0.00000000e+00]],

       [[-7.99063087e-01],
        [ 7.03785300e-01],
        [ 0.00000000e+00]],

       [[-8.74689370e-02],
        [ 9.72244367e-02],
        [ 0.00000000e+00]],

       [[ 2.93721855e-01],
        [-4.42391634e-01],
        [-0.00000000e+00]],

       [[ 3.08033258e-01],
        [-7.19331205e-01],
        [-0.00000000e+00]],

       [[ 1.56246200e-01],
        [-8.11657488e-01],
        [-0.00000000e+00]],

       [[-3.56827825e-02],
        [-8.25675666e-01],
        [-0.00000000e+00]],

       [[-2.20739394e-01],
        [-7.91363358e-01],
        [-0.00000000e+00]],

       [[-3.32389057e-01],
        [-6.45848751e-01],
        [-0.00000000e+00]],

       [[-2.05395058e-01],
        [-2.73723692e-01],
        [-0.00000000e+00]],

       [[-9.02982175e-01],
        [ 9.82783973e-01],
        [ 0.00000000e+00]],

       [[-6.67127907e-01],
        [ 9.16327000e-01],
        [ 0.00000000e+00]],

       [[-2.19359398e-01],
        [ 4.08269167e-01],
        [ 0.00000000e+00]],

       [[ 2.30040140e-02],
        [-6.63826689e-02],
        [-0.00000000e+00]],

       [[ 5.24147078e-02],
        [-3.36462200e-01],
        [-0.00000000e+00]],

       [[-1.39413662e-02],
        [-3.98635417e-01],
        [-0.00000000e+00]],

       [[-5.93211055e-02],
        [-2.62799859e-01],
        [-0.00000000e+00]],

       [[ 3.63387689e-02],
        [ 8.72517303e-02],
        [ 0.00000000e+00]],

       [[ 3.69917274e-01],
        [ 6.09181523e-01],
        [ 0.00000000e+00]],

       [[-6.39997497e-02],
        [ 8.29429477e-02],
        [ 0.00000000e+00]],

       [[-6.11818850e-01],
        [ 1.00065994e+00],
        [ 0.00000000e+00]],

       [[-5.63191533e-01],
        [ 1.24815571e+00],
        [ 0.00000000e+00]],

       [[-3.21314782e-01],
        [ 1.10408890e+00],
        [ 0.00000000e+00]],

       [[-1.19617708e-01],
        [ 9.14325655e-01],
        [ 0.00000000e+00]],

       [[ 2.52198987e-02],
        [ 8.58689427e-01],
        [ 0.00000000e+00]],

       [[ 1.84667274e-01],
        [ 9.74155128e-01],
        [ 0.00000000e+00]],

       [[ 4.11813945e-01],
        [ 1.17740858e+00],
        [ 0.00000000e+00]],

       [[ 6.24271870e-01],
        [ 1.22415996e+00],
        [ 0.00000000e+00]],

       [[ 9.23433363e-01],
        [-1.38847566e+00],
        [-0.00000000e+00]],

       [[ 3.10315847e-01],
        [-5.88842511e-01],
        [-0.00000000e+00]],

       [[-1.36465833e-01],
        [ 3.50887656e-01],
        [ 0.00000000e+00]],

       [[-2.36284509e-01],
        [ 9.41976488e-01],
        [ 0.00000000e+00]],

       [[-1.34854600e-01],
        [ 1.19592142e+00],
        [ 0.00000000e+00]],

       [[ 3.15232091e-02],
        [ 1.24524486e+00],
        [ 0.00000000e+00]],

       [[ 1.85095191e-01],
        [ 1.13283014e+00],
        [ 0.00000000e+00]],

       [[ 2.32448518e-01],
        [ 7.71053255e-01],
        [ 0.00000000e+00]],

       [[ 1.57082435e-02],
        [ 3.57374474e-02],
        [ 0.00000000e+00]],

       [[ 2.94920623e-01],
        [-5.04672289e-01],
        [-0.00000000e+00]],

       [[ 7.04164147e-01],
        [-1.52069008e+00],
        [-0.00000000e+00]],

       [[ 5.43370008e-01],
        [-1.59005249e+00],
        [-0.00000000e+00]],

       [[ 2.70662814e-01],
        [-1.22801900e+00],
        [-0.00000000e+00]],

       [[ 8.91163275e-02],
        [-8.99426699e-01],
        [-0.00000000e+00]],

       [[-1.80214997e-02],
        [-8.10189962e-01],
        [-0.00000000e+00]],

       [[-1.43314183e-01],
        [-9.98229682e-01],
        [-0.00000000e+00]],

       [[-3.64375174e-01],
        [-1.37555528e+00],
        [-0.00000000e+00]],

       [[-6.35964572e-01],
        [-1.64664686e+00],
        [-0.00000000e+00]],

       [[ 6.66562676e-01],
        [ 1.04850516e-01],
        [-0.00000000e+00]],

       [[ 7.62105525e-01],
        [ 1.51288927e-01],
        [-0.00000000e+00]],

       [[ 4.23504144e-01],
        [ 1.13919668e-01],
        [-0.00000000e+00]],

       [[ 1.37270942e-01],
        [ 5.72506376e-02],
        [-0.00000000e+00]],

       [[ 2.02173404e-02],
        [ 1.87567584e-02],
        [-0.00000000e+00]],

       [[-2.22680159e-03],
        [ 9.20243375e-03],
        [-0.00000000e+00]],

       [[-4.64233570e-02],
        [ 2.97237132e-02],
        [-0.00000000e+00]],

       [[-2.22293749e-01],
        [ 7.71403760e-02],
        [-0.00000000e+00]],

       [[-5.58720410e-01],
        [ 1.32980317e-01],
        [-0.00000000e+00]],

       [[ 7.01502144e-01],
        [-3.52942497e-02],
        [-0.00000000e+00]],

       [[ 7.58865595e-01],
        [-4.81839404e-02],
        [-0.00000000e+00]],

       [[ 4.03807789e-01],
        [-3.47425081e-02],
        [-0.00000000e+00]],

       [[ 1.19760707e-01],
        [-1.59757584e-02],
        [-0.00000000e+00]],

       [[ 1.18420171e-02],
        [-3.51402466e-03],
        [-0.00000000e+00]],

       [[-3.38587939e-04],
        [-4.47546423e-04],
        [-0.00000000e+00]],

       [[-3.44078839e-02],
        [-7.04644248e-03],
        [-0.00000000e+00]],

       [[-2.02638671e-01],
        [-2.24916991e-02],
        [-0.00000000e+00]],

       [[-5.42255461e-01],
        [-4.12802286e-02],
        [-0.00000000e+00]],

       [[ 5.96121848e-01],
        [-1.53754786e-01],
        [-0.00000000e+00]],

       [[ 7.62714505e-01],
        [-2.48266473e-01],
        [-0.00000000e+00]],

       [[ 4.57467735e-01],
        [-2.01774165e-01],
        [-0.00000000e+00]],

       [[ 1.69184729e-01],
        [-1.15698285e-01],
        [-0.00000000e+00]],

       [[ 3.58087048e-02],
        [-5.44736385e-02],
        [-0.00000000e+00]],

       [[-5.75862778e-03],
        [-3.90215218e-02],
        [-0.00000000e+00]],

       [[-6.86659366e-02],
        [-7.20894858e-02],
        [-0.00000000e+00]],

       [[-2.57626325e-01],
        [-1.46591499e-01],
        [-0.00000000e+00]],

       [[-5.85640609e-01],
        [-2.28553563e-01],
        [-0.00000000e+00]],

       [[ 3.01900089e-01],
        [-1.40545905e-01],
        [-0.00000000e+00]],

       [[ 7.06389070e-01],
        [-4.15012687e-01],
        [-0.00000000e+00]],

       [[ 5.42221606e-01],
        [-4.31661427e-01],
        [-0.00000000e+00]],

       [[ 2.68808007e-01],
        [-3.31794560e-01],
        [-0.00000000e+00]],

       [[ 8.80707353e-02],
        [-2.41819173e-01],
        [-0.00000000e+00]],

       [[-1.77776460e-02],
        [-2.17430666e-01],
        [-0.00000000e+00]],

       [[-1.41874880e-01],
        [-2.68842191e-01],
        [-0.00000000e+00]],

       [[-3.62530917e-01],
        [-3.72327358e-01],
        [-0.00000000e+00]],

       [[-6.35718167e-01],
        [-4.47798610e-01],
        [-0.00000000e+00]],

       [[-2.19341606e-01],
        [ 1.47649914e-01],
        [ 0.00000000e+00]],

       [[ 4.51947331e-01],
        [-3.83939207e-01],
        [-0.00000000e+00]],

       [[ 5.42342663e-01],
        [-6.24305844e-01],
        [-0.00000000e+00]],

       [[ 3.56828392e-01],
        [-6.36859655e-01],
        [-0.00000000e+00]],

       [[ 1.46870583e-01],
        [-5.83110929e-01],
        [-0.00000000e+00]],

       [[-3.18907276e-02],
        [-5.63985825e-01],
        [-0.00000000e+00]],

       [[-2.19829559e-01],
        [-6.02331042e-01],
        [-0.00000000e+00]],

       [[-4.36267436e-01],
        [-6.47873044e-01],
        [-0.00000000e+00]],

       [[-5.60597062e-01],
        [-5.70986986e-01],
        [-0.00000000e+00]],

       [[-7.99063087e-01],
        [ 7.03785300e-01],
        [ 0.00000000e+00]],

       [[-8.74689370e-02],
        [ 9.72244367e-02],
        [ 0.00000000e+00]],

       [[ 2.93721855e-01],
        [-4.42391634e-01],
        [-0.00000000e+00]],

       [[ 3.08033258e-01],
        [-7.19331205e-01],
        [-0.00000000e+00]],

       [[ 1.56246200e-01],
        [-8.11657488e-01],
        [-0.00000000e+00]],

       [[-3.56827825e-02],
        [-8.25675666e-01],
        [-0.00000000e+00]],

       [[-2.20739394e-01],
        [-7.91363358e-01],
        [-0.00000000e+00]],

       [[-3.32389057e-01],
        [-6.45848751e-01],
        [-0.00000000e+00]],

       [[-2.05395058e-01],
        [-2.73723692e-01],
        [-0.00000000e+00]],

       [[-9.02982175e-01],
        [ 9.82783973e-01],
        [ 0.00000000e+00]],

       [[-6.67127907e-01],
        [ 9.16327000e-01],
        [ 0.00000000e+00]],

       [[-2.19359398e-01],
        [ 4.08269167e-01],
        [ 0.00000000e+00]],

       [[ 2.30040140e-02],
        [-6.63826689e-02],
        [-0.00000000e+00]],

       [[ 5.24147078e-02],
        [-3.36462200e-01],
        [-0.00000000e+00]],

       [[-1.39413662e-02],
        [-3.98635417e-01],
        [-0.00000000e+00]],

       [[-5.93211055e-02],
        [-2.62799859e-01],
        [-0.00000000e+00]],

       [[ 3.63387689e-02],
        [ 8.72517303e-02],
        [ 0.00000000e+00]],

       [[ 3.69917274e-01],
        [ 6.09181523e-01],
        [ 0.00000000e+00]],

       [[-6.39997497e-02],
        [ 8.29429477e-02],
        [ 0.00000000e+00]],

       [[-6.11818850e-01],
        [ 1.00065994e+00],
        [ 0.00000000e+00]],

       [[-5.63191533e-01],
        [ 1.24815571e+00],
        [ 0.00000000e+00]],

       [[-3.21314782e-01],
        [ 1.10408890e+00],
        [ 0.00000000e+00]],

       [[-1.19617708e-01],
        [ 9.14325655e-01],
        [ 0.00000000e+00]],

       [[ 2.52198987e-02],
        [ 8.58689427e-01],
        [ 0.00000000e+00]],

       [[ 1.84667274e-01],
        [ 9.74155128e-01],
        [ 0.00000000e+00]],

       [[ 4.11813945e-01],
        [ 1.17740858e+00],
        [ 0.00000000e+00]],

       [[ 6.24271870e-01],
        [ 1.22415996e+00],
        [ 0.00000000e+00]],

       [[ 9.23433363e-01],
        [-1.38847566e+00],
        [-0.00000000e+00]],

       [[ 3.10315847e-01],
        [-5.88842511e-01],
        [-0.00000000e+00]],

       [[-1.36465833e-01],
        [ 3.50887656e-01],
        [ 0.00000000e+00]],

       [[-2.36284509e-01],
        [ 9.41976488e-01],
        [ 0.00000000e+00]],

       [[-1.34854600e-01],
        [ 1.19592142e+00],
        [ 0.00000000e+00]],

       [[ 3.15232091e-02],
        [ 1.24524486e+00],
        [ 0.00000000e+00]],

       [[ 1.85095191e-01],
        [ 1.13283014e+00],
        [ 0.00000000e+00]],

       [[ 2.32448518e-01],
        [ 7.71053255e-01],
        [ 0.00000000e+00]],

       [[ 1.57082435e-02],
        [ 3.57374474e-02],
        [ 0.00000000e+00]],

       [[ 2.94920623e-01],
        [-5.04672289e-01],
        [-0.00000000e+00]],

       [[ 7.04164147e-01],
        [-1.52069008e+00],
        [-0.00000000e+00]],

       [[ 5.43370008e-01],
        [-1.59005249e+00],
        [-0.00000000e+00]],

       [[ 2.70662814e-01],
        [-1.22801900e+00],
        [-0.00000000e+00]],

       [[ 8.91163275e-02],
        [-8.99426699e-01],
        [-0.00000000e+00]],

       [[-1.80214997e-02],
        [-8.10189962e-01],
        [-0.00000000e+00]],

       [[-1.43314183e-01],
        [-9.98229682e-01],
        [-0.00000000e+00]],

       [[-3.64375174e-01],
        [-1.37555528e+00],
        [-0.00000000e+00]],

       [[-6.35964572e-01],
        [-1.64664686e+00],
        [-0.00000000e+00]]], dtype=float32)}, 'loss': 0.32082125544548035, 'raw_loss': 0.04321780055761337, 'output_directory': PosixPath('00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/2'), 'fem_data': <femio.fem_data.FEMData object at 0x7f37c1c21040>}, {'dict_x': {'phi': array([[-0.9943199 ],
       [-0.84786403],
       [-0.5196629 ],
       [-0.27728686],
       [-0.21381806],
       [-0.34289256],
       [-0.6322912 ],
       [-0.93876207],
       [-0.9276463 ],
       [-0.80331945],
       [-0.264187  ],
       [ 0.19683276],
       [ 0.4471833 ],
       [ 0.5047575 ],
       [ 0.38442823],
       [ 0.06003958],
       [-0.45683768],
       [-0.9352447 ],
       [-0.37858352],
       [ 0.27368468],
       [ 0.6762861 ],
       [ 0.84587127],
       [ 0.87896323],
       [ 0.807069  ],
       [ 0.56848115],
       [ 0.07008831],
       [-0.61656076],
       [-0.04366874],
       [ 0.582503  ],
       [ 0.88537127],
       [ 0.97632825],
       [ 0.9883899 ],
       [ 0.9590854 ],
       [ 0.8129739 ],
       [ 0.40294155],
       [-0.3143616 ],
       [ 0.10072906],
       [ 0.69353724],
       [ 0.9431138 ],
       [ 0.9973049 ],
       [ 0.9999684 ],
       [ 0.9898698 ],
       [ 0.888389  ],
       [ 0.53060263],
       [-0.17430629],
       [ 0.04546728],
       [ 0.6525693 ],
       [ 0.92325085],
       [ 0.9917101 ],
       [ 0.9979932 ],
       [ 0.9804863 ],
       [ 0.86159664],
       [ 0.48283938],
       [-0.22857963],
       [-0.20839559],
       [ 0.43995905],
       [ 0.7962315 ],
       [ 0.9270729 ],
       [ 0.9496181 ],
       [ 0.89900947],
       [ 0.70540166],
       [ 0.24592802],
       [-0.46712437],
       [-0.9943199 ],
       [-0.84786403],
       [-0.5196629 ],
       [-0.27728686],
       [-0.21381806],
       [-0.34289256],
       [-0.6322912 ],
       [-0.93876207],
       [-0.9276463 ],
       [-0.80331945],
       [-0.264187  ],
       [ 0.19683276],
       [ 0.4471833 ],
       [ 0.5047575 ],
       [ 0.38442823],
       [ 0.06003958],
       [-0.45683768],
       [-0.9352447 ],
       [-0.37858352],
       [ 0.27368468],
       [ 0.6762861 ],
       [ 0.84587127],
       [ 0.87896323],
       [ 0.807069  ],
       [ 0.56848115],
       [ 0.07008831],
       [-0.61656076],
       [-0.04366874],
       [ 0.582503  ],
       [ 0.88537127],
       [ 0.97632825],
       [ 0.9883899 ],
       [ 0.9590854 ],
       [ 0.8129739 ],
       [ 0.40294155],
       [-0.3143616 ],
       [ 0.10072906],
       [ 0.69353724],
       [ 0.9431138 ],
       [ 0.9973049 ],
       [ 0.9999684 ],
       [ 0.9898698 ],
       [ 0.888389  ],
       [ 0.53060263],
       [-0.17430629],
       [ 0.04546728],
       [ 0.6525693 ],
       [ 0.92325085],
       [ 0.9917101 ],
       [ 0.9979932 ],
       [ 0.9804863 ],
       [ 0.86159664],
       [ 0.48283938],
       [-0.22857963],
       [-0.20839559],
       [ 0.43995905],
       [ 0.7962315 ],
       [ 0.9270729 ],
       [ 0.9496181 ],
       [ 0.89900947],
       [ 0.70540166],
       [ 0.24592802],
       [-0.46712437]], dtype=float32)}, 'dict_y': {'grad': array([[[ 0.12231308],
        [ 0.1330094 ],
        [-0.02846933]],

       [[ 0.38285846],
        [ 0.5117269 ],
        [ 0.00451158]],

       [[ 0.34887612],
        [ 0.623319  ],
        [-0.02166803]],

       [[ 0.16269867],
        [ 0.71950203],
        [-0.02642946]],

       [[-0.03391628],
        [ 0.7534466 ],
        [-0.02492674]],

       [[-0.23128927],
        [ 0.68716663],
        [-0.02764879]],

       [[-0.40313536],
        [ 0.5916269 ],
        [-0.01316644]],

       [[-0.2959681 ],
        [ 0.37307215],
        [ 0.01026099]],

       [[-0.01816191],
        [ 0.01794044],
        [-0.02244909]],

       [[ 0.4910982 ],
        [ 0.46435684],
        [ 0.00878068]],

       [[ 0.50060236],
        [ 0.5692736 ],
        [ 0.0213112 ]],

       [[ 0.3911027 ],
        [ 0.6262409 ],
        [-0.04811583]],

       [[ 0.16570462],
        [ 0.6224981 ],
        [-0.05961016]],

       [[-0.0323343 ],
        [ 0.6039531 ],
        [-0.05871086]],

       [[-0.2440226 ],
        [ 0.6348822 ],
        [-0.05891297]],

       [[-0.45843792],
        [ 0.6088749 ],
        [-0.03396764]],

       [[-0.5240198 ],
        [ 0.5327263 ],
        [ 0.04916516]],

       [[-0.37600452],
        [ 0.30662778],
        [ 0.01120252]],

       [[ 0.60386676],
        [ 0.4234204 ],
        [-0.02328845]],

       [[ 0.55300975],
        [ 0.46880323],
        [-0.06225759]],

       [[ 0.27710456],
        [ 0.33322376],
        [-0.08540539]],

       [[ 0.0677319 ],
        [ 0.19356136],
        [-0.0738942 ]],

       [[-0.01341701],
        [ 0.18841214],
        [-0.0758209 ]],

       [[-0.10733674],
        [ 0.21267319],
        [-0.07181477]],

       [[-0.4049614 ],
        [ 0.41425148],
        [-0.09822997]],

       [[-0.6005172 ],
        [ 0.46904823],
        [-0.03587665]],

       [[-0.5873748 ],
        [ 0.41303173],
        [-0.01384141]],

       [[ 0.76679605],
        [ 0.2529034 ],
        [-0.02363236]],

       [[ 0.48468265],
        [ 0.20533599],
        [-0.07004963]],

       [[ 0.15701574],
        [ 0.09958287],
        [-0.07799657]],

       [[ 0.04112054],
        [ 0.06069496],
        [-0.03747046]],

       [[-0.00653918],
        [ 0.04696823],
        [-0.02609108]],

       [[-0.0731388 ],
        [ 0.07628826],
        [-0.05068771]],

       [[-0.20485206],
        [ 0.10948014],
        [-0.07246947]],

       [[-0.6224069 ],
        [ 0.2511756 ],
        [-0.06084349]],

       [[-0.6919033 ],
        [ 0.24078907],
        [-0.02742203]],

       [[ 0.8329668 ],
        [ 0.04742076],
        [-0.02812108]],

       [[ 0.39146954],
        [ 0.02566654],
        [-0.0728009 ]],

       [[ 0.12685366],
        [ 0.0165436 ],
        [-0.05839245]],

       [[ 0.02192857],
        [ 0.00646992],
        [-0.01400753]],

       [[-0.00306609],
        [ 0.00433689],
        [-0.005558  ]],

       [[-0.0427362 ],
        [ 0.00888615],
        [-0.02405302]],

       [[-0.18479441],
        [ 0.01638032],
        [-0.07669692]],

       [[-0.5805281 ],
        [ 0.0374805 ],
        [-0.06169586]],

       [[-0.76435584],
        [ 0.04262712],
        [-0.02443164]],

       [[ 0.8265274 ],
        [-0.15422034],
        [-0.02457186]],

       [[ 0.42855868],
        [-0.09855905],
        [-0.06558068]],

       [[ 0.14117564],
        [-0.03676299],
        [-0.06308696]],

       [[ 0.02343721],
        [-0.0123715 ],
        [-0.01572587]],

       [[-0.00322728],
        [-0.00923519],
        [-0.00766465]],

       [[-0.04663594],
        [-0.01695845],
        [-0.02603939]],

       [[-0.19947481],
        [-0.04873316],
        [-0.07753708]],

       [[-0.60401565],
        [-0.13139349],
        [-0.04989433]],

       [[-0.7399073 ],
        [-0.13528045],
        [-0.02185981]],

       [[ 0.7640336 ],
        [-0.2677525 ],
        [-0.01572417]],

       [[ 0.5815963 ],
        [-0.27896053],
        [-0.0023311 ]],

       [[ 0.23053761],
        [-0.09453455],
        [-0.04122831]],

       [[ 0.04327085],
        [-0.03139295],
        [-0.01340223]],

       [[-0.00621794],
        [-0.02369821],
        [-0.00670073]],

       [[-0.08520877],
        [-0.04237388],
        [-0.0224765 ]],

       [[-0.30660117],
        [-0.15757857],
        [-0.02764373]],

       [[-0.6799799 ],
        [-0.31853923],
        [ 0.01029936]],

       [[-0.65364885],
        [-0.22855707],
        [-0.0147831 ]],

       [[ 0.12231307],
        [ 0.13300939],
        [ 0.02846929]],

       [[ 0.38285843],
        [ 0.51172686],
        [-0.0045116 ]],

       [[ 0.34887612],
        [ 0.623319  ],
        [ 0.02166798]],

       [[ 0.16269867],
        [ 0.71950203],
        [ 0.02642935]],

       [[-0.03391626],
        [ 0.7534467 ],
        [ 0.02492674]],

       [[-0.23128925],
        [ 0.68716663],
        [ 0.02764884]],

       [[-0.40313536],
        [ 0.5916268 ],
        [ 0.01316645]],

       [[-0.2959681 ],
        [ 0.37307215],
        [-0.01026101]],

       [[-0.01816191],
        [ 0.01794044],
        [ 0.02244907]],

       [[ 0.49109823],
        [ 0.46435693],
        [-0.00878063]],

       [[ 0.50060236],
        [ 0.5692736 ],
        [-0.02131113]],

       [[ 0.39110264],
        [ 0.6262409 ],
        [ 0.0481158 ]],

       [[ 0.16570462],
        [ 0.6224981 ],
        [ 0.0596101 ]],

       [[-0.0323343 ],
        [ 0.6039531 ],
        [ 0.05871082]],

       [[-0.2440226 ],
        [ 0.63488215],
        [ 0.05891297]],

       [[-0.45843792],
        [ 0.608875  ],
        [ 0.03396766]],

       [[-0.5240197 ],
        [ 0.5327264 ],
        [-0.04916518]],

       [[-0.37600452],
        [ 0.3066278 ],
        [-0.01120255]],

       [[ 0.6038667 ],
        [ 0.4234204 ],
        [ 0.02328851]],

       [[ 0.55300987],
        [ 0.46880317],
        [ 0.06225755]],

       [[ 0.27710456],
        [ 0.33322376],
        [ 0.08540536]],

       [[ 0.06773191],
        [ 0.19356136],
        [ 0.07389419]],

       [[-0.01341701],
        [ 0.18841214],
        [ 0.0758209 ]],

       [[-0.10733675],
        [ 0.21267319],
        [ 0.07181475]],

       [[-0.40496135],
        [ 0.41425148],
        [ 0.09822994]],

       [[-0.6005172 ],
        [ 0.46904823],
        [ 0.03587677]],

       [[-0.58737487],
        [ 0.41303173],
        [ 0.01384148]],

       [[ 0.76679593],
        [ 0.2529034 ],
        [ 0.02363235]],

       [[ 0.4846827 ],
        [ 0.205336  ],
        [ 0.07004964]],

       [[ 0.15701574],
        [ 0.09958287],
        [ 0.07799656]],

       [[ 0.04112054],
        [ 0.06069496],
        [ 0.03747046]],

       [[-0.00653918],
        [ 0.04696823],
        [ 0.02609108]],

       [[-0.0731388 ],
        [ 0.07628827],
        [ 0.05068771]],

       [[-0.20485203],
        [ 0.10948016],
        [ 0.07246949]],

       [[-0.6224068 ],
        [ 0.25117564],
        [ 0.06084359]],

       [[-0.69190323],
        [ 0.24078906],
        [ 0.02742215]],

       [[ 0.8329666 ],
        [ 0.04742075],
        [ 0.02812108]],

       [[ 0.39146957],
        [ 0.02566654],
        [ 0.07280087]],

       [[ 0.12685366],
        [ 0.0165436 ],
        [ 0.05839245]],

       [[ 0.02192857],
        [ 0.00646992],
        [ 0.01400754]],

       [[-0.00306609],
        [ 0.0043369 ],
        [ 0.005558  ]],

       [[-0.0427362 ],
        [ 0.00888615],
        [ 0.02405302]],

       [[-0.18479443],
        [ 0.01638032],
        [ 0.07669693]],

       [[-0.5805281 ],
        [ 0.03748048],
        [ 0.06169591]],

       [[-0.76435566],
        [ 0.0426271 ],
        [ 0.02443183]],

       [[ 0.82652754],
        [-0.15422036],
        [ 0.02457179]],

       [[ 0.42855868],
        [-0.09855907],
        [ 0.0655806 ]],

       [[ 0.14117563],
        [-0.03676299],
        [ 0.06308696]],

       [[ 0.02343721],
        [-0.0123715 ],
        [ 0.01572587]],

       [[-0.00322728],
        [-0.00923519],
        [ 0.00766465]],

       [[-0.04663594],
        [-0.01695845],
        [ 0.02603938]],

       [[-0.19947478],
        [-0.04873316],
        [ 0.07753708]],

       [[-0.60401565],
        [-0.1313935 ],
        [ 0.04989428]],

       [[-0.73990744],
        [-0.13528048],
        [ 0.02185975]],

       [[ 0.7640336 ],
        [-0.2677525 ],
        [ 0.01572414]],

       [[ 0.58159626],
        [-0.2789605 ],
        [ 0.00233112]],

       [[ 0.23053764],
        [-0.09453455],
        [ 0.04122831]],

       [[ 0.04327086],
        [-0.03139294],
        [ 0.01340224]],

       [[-0.00621794],
        [-0.02369821],
        [ 0.00670073]],

       [[-0.08520877],
        [-0.04237388],
        [ 0.02247651]],

       [[-0.3066012 ],
        [-0.15757856],
        [ 0.02764373]],

       [[-0.6799799 ],
        [-0.3185392 ],
        [-0.01029938]],

       [[-0.65364885],
        [-0.22855707],
        [ 0.01478303]]], dtype=float32)}, 'original_shapes': array([[126]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/3'), 'inference_time': 0.0011811256408691406, 'inference_start_datetime': '2025-01-24_06-58-17.017657', 'dict_answer': {'grad': array([[[-8.1472881e-02],
        [-8.9891225e-02],
        [ 0.0000000e+00]],

       [[ 2.9982916e-01],
        [ 4.4780940e-01],
        [-0.0000000e+00]],

       [[ 3.1226191e-01],
        [ 7.2158736e-01],
        [-0.0000000e+00]],

       [[ 1.5899810e-01],
        [ 8.1146431e-01],
        [-0.0000000e+00]],

       [[-3.3714525e-02],
        [ 8.2505053e-01],
        [-0.0000000e+00]],

       [[-2.2029527e-01],
        [ 7.9337972e-01],
        [-0.0000000e+00]],

       [[-3.3663034e-01],
        [ 6.5432429e-01],
        [-0.0000000e+00]],

       [[-2.1863155e-01],
        [ 2.9101461e-01],
        [-0.0000000e+00]],

       [[ 3.1165713e-01],
        [-3.1541792e-01],
        [ 0.0000000e+00]],

       [[ 4.5588472e-01],
        [ 3.8388023e-01],
        [-0.0000000e+00]],

       [[ 5.4539639e-01],
        [ 6.2168169e-01],
        [-0.0000000e+00]],

       [[ 3.5833731e-01],
        [ 6.3197285e-01],
        [-0.0000000e+00]],

       [[ 1.4801887e-01],
        [ 5.7654214e-01],
        [-0.0000000e+00]],

       [[-2.9793458e-02],
        [ 5.5644327e-01],
        [-0.0000000e+00]],

       [[-2.1649152e-01],
        [ 5.9504974e-01],
        [-0.0000000e+00]],

       [[-4.3372881e-01],
        [ 6.4341998e-01],
        [-0.0000000e+00]],

       [[-5.6443077e-01],
        [ 5.7338870e-01],
        [-0.0000000e+00]],

       [[-2.9541910e-01],
        [ 2.2818355e-01],
        [-0.0000000e+00]],

       [[ 7.0850992e-01],
        [ 4.1149122e-01],
        [-0.0000000e+00]],

       [[ 5.4389673e-01],
        [ 4.2760840e-01],
        [-0.0000000e+00]],

       [[ 2.6923224e-01],
        [ 3.2749704e-01],
        [-0.0000000e+00]],

       [[ 8.8268802e-02],
        [ 2.3713472e-01],
        [-0.0000000e+00]],

       [[-1.6458735e-02],
        [ 2.1201687e-01],
        [-0.0000000e+00]],

       [[-1.3846968e-01],
        [ 2.6250708e-01],
        [-0.0000000e+00]],

       [[-3.5747197e-01],
        [ 3.6575660e-01],
        [-0.0000000e+00]],

       [[-6.3295227e-01],
        [ 4.4348946e-01],
        [-0.0000000e+00]],

       [[-6.5701795e-01],
        [ 3.5002327e-01],
        [-0.0000000e+00]],

       [[ 7.6475704e-01],
        [ 2.4434946e-01],
        [-0.0000000e+00]],

       [[ 4.5964423e-01],
        [ 1.9880387e-01],
        [-0.0000000e+00]],

       [[ 1.6990943e-01],
        [ 1.1370278e-01],
        [-0.0000000e+00]],

       [[ 3.5793912e-02],
        [ 5.2901782e-02],
        [-0.0000000e+00]],

       [[-5.2438192e-03],
        [ 3.7161645e-02],
        [-0.0000000e+00]],

       [[-6.6394486e-02],
        [ 6.9245502e-02],
        [-0.0000000e+00]],

       [[-2.5301677e-01],
        [ 1.4242058e-01],
        [-0.0000000e+00]],

       [[-5.8072233e-01],
        [ 2.2384848e-01],
        [-0.0000000e+00]],

       [[-7.9220563e-01],
        [ 2.3218326e-01],
        [-0.0000000e+00]],

       [[ 7.6159394e-01],
        [ 4.4356041e-02],
        [-0.0000000e+00]],

       [[ 4.0738881e-01],
        [ 3.2118373e-02],
        [-0.0000000e+00]],

       [[ 1.2151363e-01],
        [ 1.4822449e-02],
        [-0.0000000e+00]],

       [[ 1.2141510e-02],
        [ 3.2709599e-03],
        [-0.0000000e+00]],

       [[-2.7426513e-04],
        [ 3.5429024e-04],
        [-0.0000000e+00]],

       [[-3.3295684e-02],
        [ 6.3297842e-03],
        [-0.0000000e+00]],

       [[-1.9948107e-01],
        [ 2.0467579e-02],
        [-0.0000000e+00]],

       [[-5.3782606e-01],
        [ 3.7789300e-02],
        [-0.0000000e+00]],

       [[-8.2173753e-01],
        [ 4.3900296e-02],
        [-0.0000000e+00]],

       [[ 7.6469564e-01],
        [-1.5525648e-01],
        [-0.0000000e+00]],

       [[ 4.2848617e-01],
        [-1.1776413e-01],
        [-0.0000000e+00]],

       [[ 1.4041941e-01],
        [-5.9710942e-02],
        [-0.0000000e+00]],

       [[ 2.1264318e-02],
        [-1.9970357e-02],
        [-0.0000000e+00]],

       [[-2.1854013e-03],
        [-9.8412801e-03],
        [-0.0000000e+00]],

       [[-4.6102371e-02],
        [-3.0553153e-02],
        [-0.0000000e+00]],

       [[-2.2055583e-01],
        [-7.8888766e-02],
        [-0.0000000e+00]],

       [[-5.5564845e-01],
        [-1.3610023e-01],
        [-0.0000000e+00]],

       [[-8.1241906e-01],
        [-1.5130256e-01],
        [-0.0000000e+00]],

       [[ 7.4868071e-01],
        [-3.4761390e-01],
        [-0.0000000e+00]],

       [[ 5.0781769e-01],
        [-3.1917098e-01],
        [-0.0000000e+00]],

       [[ 2.2111693e-01],
        [-2.1502459e-01],
        [-0.0000000e+00]],

       [[ 6.2038083e-02],
        [-1.3323922e-01],
        [-0.0000000e+00]],

       [[-1.0816601e-02],
        [-1.1139113e-01],
        [-0.0000000e+00]],

       [[-1.0269996e-01],
        [-1.5564758e-01],
        [-0.0000000e+00]],

       [[-3.0798596e-01],
        [-2.5192249e-01],
        [-0.0000000e+00]],

       [[-6.1502558e-01],
        [-3.4450167e-01],
        [-0.0000000e+00]],

       [[-7.3786914e-01],
        [-3.1425691e-01],
        [-0.0000000e+00]],

       [[-8.1472881e-02],
        [-8.9891225e-02],
        [ 0.0000000e+00]],

       [[ 2.9982916e-01],
        [ 4.4780940e-01],
        [-0.0000000e+00]],

       [[ 3.1226191e-01],
        [ 7.2158736e-01],
        [-0.0000000e+00]],

       [[ 1.5899810e-01],
        [ 8.1146431e-01],
        [-0.0000000e+00]],

       [[-3.3714525e-02],
        [ 8.2505053e-01],
        [-0.0000000e+00]],

       [[-2.2029527e-01],
        [ 7.9337972e-01],
        [-0.0000000e+00]],

       [[-3.3663034e-01],
        [ 6.5432429e-01],
        [-0.0000000e+00]],

       [[-2.1863155e-01],
        [ 2.9101461e-01],
        [-0.0000000e+00]],

       [[ 3.1165713e-01],
        [-3.1541792e-01],
        [ 0.0000000e+00]],

       [[ 4.5588472e-01],
        [ 3.8388023e-01],
        [-0.0000000e+00]],

       [[ 5.4539639e-01],
        [ 6.2168169e-01],
        [-0.0000000e+00]],

       [[ 3.5833731e-01],
        [ 6.3197285e-01],
        [-0.0000000e+00]],

       [[ 1.4801887e-01],
        [ 5.7654214e-01],
        [-0.0000000e+00]],

       [[-2.9793458e-02],
        [ 5.5644327e-01],
        [-0.0000000e+00]],

       [[-2.1649152e-01],
        [ 5.9504974e-01],
        [-0.0000000e+00]],

       [[-4.3372881e-01],
        [ 6.4341998e-01],
        [-0.0000000e+00]],

       [[-5.6443077e-01],
        [ 5.7338870e-01],
        [-0.0000000e+00]],

       [[-2.9541910e-01],
        [ 2.2818355e-01],
        [-0.0000000e+00]],

       [[ 7.0850992e-01],
        [ 4.1149122e-01],
        [-0.0000000e+00]],

       [[ 5.4389673e-01],
        [ 4.2760840e-01],
        [-0.0000000e+00]],

       [[ 2.6923224e-01],
        [ 3.2749704e-01],
        [-0.0000000e+00]],

       [[ 8.8268802e-02],
        [ 2.3713472e-01],
        [-0.0000000e+00]],

       [[-1.6458735e-02],
        [ 2.1201687e-01],
        [-0.0000000e+00]],

       [[-1.3846968e-01],
        [ 2.6250708e-01],
        [-0.0000000e+00]],

       [[-3.5747197e-01],
        [ 3.6575660e-01],
        [-0.0000000e+00]],

       [[-6.3295227e-01],
        [ 4.4348946e-01],
        [-0.0000000e+00]],

       [[-6.5701795e-01],
        [ 3.5002327e-01],
        [-0.0000000e+00]],

       [[ 7.6475704e-01],
        [ 2.4434946e-01],
        [-0.0000000e+00]],

       [[ 4.5964423e-01],
        [ 1.9880387e-01],
        [-0.0000000e+00]],

       [[ 1.6990943e-01],
        [ 1.1370278e-01],
        [-0.0000000e+00]],

       [[ 3.5793912e-02],
        [ 5.2901782e-02],
        [-0.0000000e+00]],

       [[-5.2438192e-03],
        [ 3.7161645e-02],
        [-0.0000000e+00]],

       [[-6.6394486e-02],
        [ 6.9245502e-02],
        [-0.0000000e+00]],

       [[-2.5301677e-01],
        [ 1.4242058e-01],
        [-0.0000000e+00]],

       [[-5.8072233e-01],
        [ 2.2384848e-01],
        [-0.0000000e+00]],

       [[-7.9220563e-01],
        [ 2.3218326e-01],
        [-0.0000000e+00]],

       [[ 7.6159394e-01],
        [ 4.4356041e-02],
        [-0.0000000e+00]],

       [[ 4.0738881e-01],
        [ 3.2118373e-02],
        [-0.0000000e+00]],

       [[ 1.2151363e-01],
        [ 1.4822449e-02],
        [-0.0000000e+00]],

       [[ 1.2141510e-02],
        [ 3.2709599e-03],
        [-0.0000000e+00]],

       [[-2.7426513e-04],
        [ 3.5429024e-04],
        [-0.0000000e+00]],

       [[-3.3295684e-02],
        [ 6.3297842e-03],
        [-0.0000000e+00]],

       [[-1.9948107e-01],
        [ 2.0467579e-02],
        [-0.0000000e+00]],

       [[-5.3782606e-01],
        [ 3.7789300e-02],
        [-0.0000000e+00]],

       [[-8.2173753e-01],
        [ 4.3900296e-02],
        [-0.0000000e+00]],

       [[ 7.6469564e-01],
        [-1.5525648e-01],
        [-0.0000000e+00]],

       [[ 4.2848617e-01],
        [-1.1776413e-01],
        [-0.0000000e+00]],

       [[ 1.4041941e-01],
        [-5.9710942e-02],
        [-0.0000000e+00]],

       [[ 2.1264318e-02],
        [-1.9970357e-02],
        [-0.0000000e+00]],

       [[-2.1854013e-03],
        [-9.8412801e-03],
        [-0.0000000e+00]],

       [[-4.6102371e-02],
        [-3.0553153e-02],
        [-0.0000000e+00]],

       [[-2.2055583e-01],
        [-7.8888766e-02],
        [-0.0000000e+00]],

       [[-5.5564845e-01],
        [-1.3610023e-01],
        [-0.0000000e+00]],

       [[-8.1241906e-01],
        [-1.5130256e-01],
        [-0.0000000e+00]],

       [[ 7.4868071e-01],
        [-3.4761390e-01],
        [-0.0000000e+00]],

       [[ 5.0781769e-01],
        [-3.1917098e-01],
        [-0.0000000e+00]],

       [[ 2.2111693e-01],
        [-2.1502459e-01],
        [-0.0000000e+00]],

       [[ 6.2038083e-02],
        [-1.3323922e-01],
        [-0.0000000e+00]],

       [[-1.0816601e-02],
        [-1.1139113e-01],
        [-0.0000000e+00]],

       [[-1.0269996e-01],
        [-1.5564758e-01],
        [-0.0000000e+00]],

       [[-3.0798596e-01],
        [-2.5192249e-01],
        [-0.0000000e+00]],

       [[-6.1502558e-01],
        [-3.4450167e-01],
        [-0.0000000e+00]],

       [[-7.3786914e-01],
        [-3.1425691e-01],
        [-0.0000000e+00]]], dtype=float32)}, 'loss': 0.027971936389803886, 'raw_loss': 0.003768096212297678, 'output_directory': PosixPath('00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/3'), 'fem_data': <femio.fem_data.FEMData object at 0x7f37ed67aa30>}, {'dict_x': {'phi': array([[-0.6916169 ],
       [-0.70247656],
       [-0.83822346],
       [-0.9869658 ],
       [-0.8989135 ],
       [-0.29756144],
       [ 0.6541125 ],
       [ 0.09871868],
       [ 0.08363593],
       [-0.13103436],
       [-0.51974994],
       [-0.9174824 ],
       [-0.9186866 ],
       [-0.14903902],
       [ 0.6899969 ],
       [ 0.6789553 ],
       [ 0.5065621 ],
       [ 0.11578646],
       [-0.4786348 ],
       [-0.96727085],
       [-0.72580326],
       [ 0.9404969 ],
       [ 0.9352426 ],
       [ 0.8381038 ],
       [ 0.54689574],
       [-0.03648611],
       [-0.7523619 ],
       [-0.9565139 ],
       [ 0.99646556],
       [ 0.99507904],
       [ 0.9509841 ],
       [ 0.74548143],
       [ 0.22418904],
       [-0.55555904],
       [-0.9994427 ],
       [ 0.9997689 ],
       [ 0.99932873],
       [ 0.9684684 ],
       [ 0.78572166],
       [ 0.28472146],
       [-0.50245005],
       [-0.9995731 ],
       [ 0.9874033 ],
       [ 0.9848937 ],
       [ 0.9252192 ],
       [ 0.69359446],
       [ 0.15074405],
       [-0.61613417],
       [-0.9941548 ],
       [ 0.8793569 ],
       [ 0.8720443 ],
       [ 0.7474518 ],
       [ 0.41602704],
       [-0.18500213],
       [-0.8421296 ],
       [-0.9023652 ],
       [ 0.5116593 ],
       [ 0.49858788],
       [ 0.3020315 ],
       [-0.10811134],
       [-0.6619887 ],
       [-0.99948215],
       [-0.5545579 ],
       [-0.6916169 ],
       [-0.70247656],
       [-0.83822346],
       [-0.9869658 ],
       [-0.8989135 ],
       [-0.29756144],
       [ 0.6541125 ],
       [ 0.09871868],
       [ 0.08363593],
       [-0.13103436],
       [-0.51974994],
       [-0.9174824 ],
       [-0.9186866 ],
       [-0.14903902],
       [ 0.6899969 ],
       [ 0.6789553 ],
       [ 0.5065621 ],
       [ 0.11578646],
       [-0.4786348 ],
       [-0.96727085],
       [-0.72580326],
       [ 0.9404969 ],
       [ 0.9352426 ],
       [ 0.8381038 ],
       [ 0.54689574],
       [-0.03648611],
       [-0.7523619 ],
       [-0.9565139 ],
       [ 0.99646556],
       [ 0.99507904],
       [ 0.9509841 ],
       [ 0.74548143],
       [ 0.22418904],
       [-0.55555904],
       [-0.9994427 ],
       [ 0.9997689 ],
       [ 0.99932873],
       [ 0.9684684 ],
       [ 0.78572166],
       [ 0.28472146],
       [-0.50245005],
       [-0.9995731 ],
       [ 0.9874033 ],
       [ 0.9848937 ],
       [ 0.9252192 ],
       [ 0.69359446],
       [ 0.15074405],
       [-0.61613417],
       [-0.9941548 ],
       [ 0.8793569 ],
       [ 0.8720443 ],
       [ 0.7474518 ],
       [ 0.41602704],
       [-0.18500213],
       [-0.8421296 ],
       [-0.9023652 ],
       [ 0.5116593 ],
       [ 0.49858788],
       [ 0.3020315 ],
       [-0.10811134],
       [-0.6619887 ],
       [-0.99948215],
       [-0.5545579 ]], dtype=float32)}, 'dict_y': {'grad': array([[[-4.57078815e-02],
        [ 7.03080416e-01],
        [-3.13303270e-03]],

       [[-1.48774832e-01],
        [ 6.79989696e-01],
        [-1.51172960e-02]],

       [[-2.48857588e-01],
        [ 5.61667621e-01],
        [-6.45472854e-03]],

       [[-1.24767460e-01],
        [ 2.39037484e-01],
        [ 1.40438424e-02]],

       [[ 5.63721843e-02],
        [-2.11431477e-02],
        [ 2.93487683e-02]],

       [[ 6.17948771e-01],
        [-3.81924510e-01],
        [ 9.91092697e-02]],

       [[ 8.59901965e-01],
        [-6.84642434e-01],
        [-3.40913236e-02]],

       [[-2.53093033e-03],
        [ 7.45823562e-01],
        [ 1.52256163e-02]],

       [[-1.57594189e-01],
        [ 7.29616582e-01],
        [-2.42144819e-02]],

       [[-3.34356159e-01],
        [ 6.99382603e-01],
        [-1.16619179e-02]],

       [[-4.43156093e-01],
        [ 5.67837000e-01],
        [ 7.12408796e-02]],

       [[-1.34625405e-01],
        [ 1.53139755e-01],
        [ 1.08747251e-01]],

       [[ 1.58859149e-01],
        [-1.20616794e-01],
        [ 1.80642441e-01]],

       [[ 6.69179857e-01],
        [-6.07308626e-01],
        [ 5.10463864e-02]],

       [[-3.33366841e-02],
        [ 3.98689419e-01],
        [-2.23129224e-02]],

       [[-1.11694872e-01],
        [ 4.28348392e-01],
        [-7.19100162e-02]],

       [[-3.13087165e-01],
        [ 5.70961297e-01],
        [-1.05241895e-01]],

       [[-5.59950054e-01],
        [ 5.98412514e-01],
        [-9.47958156e-02]],

       [[-5.36258221e-01],
        [ 4.17571723e-01],
        [ 1.01833984e-01]],

       [[-8.34017918e-02],
        [ 5.81482351e-02],
        [ 9.71787050e-02]],

       [[ 1.18520774e-01],
        [-9.41252783e-02],
        [ 3.35650668e-02]],

       [[-4.24881279e-02],
        [ 1.25788763e-01],
        [-2.70677619e-02]],

       [[-6.07932098e-02],
        [ 1.37658879e-01],
        [-5.76710403e-02]],

       [[-1.34802148e-01],
        [ 1.53564095e-01],
        [-7.06898943e-02]],

       [[-5.04206717e-01],
        [ 3.55833292e-01],
        [-1.01715758e-01]],

       [[-7.35196173e-01],
        [ 3.83258969e-01],
        [-5.94891608e-02]],

       [[-4.46670651e-01],
        [ 1.94556490e-01],
        [ 1.10164307e-01]],

       [[-1.96939446e-02],
        [-6.73646294e-03],
        [ 1.02061927e-02]],

       [[-8.83327797e-03],
        [ 1.81026608e-02],
        [-4.72641969e-03]],

       [[-2.40256973e-02],
        [ 2.57614944e-02],
        [-1.54687557e-02]],

       [[-1.06313653e-01],
        [ 5.45684136e-02],
        [-5.62849455e-02]],

       [[-2.95279980e-01],
        [ 1.02584019e-01],
        [-6.62308931e-02]],

       [[-7.81402528e-01],
        [ 1.84379280e-01],
        [-1.09448157e-01]],

       [[-6.98797107e-01],
        [ 1.39711365e-01],
        [ 7.07118362e-02]],

       [[-1.21171921e-01],
        [ 1.79738980e-02],
        [ 2.92817550e-03]],

       [[-2.86120013e-03],
        [-2.58006132e-03],
        [-1.22508814e-03]],

       [[-1.66983735e-02],
        [-4.32968419e-03],
        [-7.82868080e-03]],

       [[-8.77608955e-02],
        [-1.05958404e-02],
        [-4.39706184e-02]],

       [[-2.41624102e-01],
        [-2.05593184e-02],
        [-6.06107041e-02]],

       [[-7.85465777e-01],
        [-4.28840593e-02],
        [-1.12276576e-01]],

       [[-7.45051742e-01],
        [-3.40887345e-02],
        [ 5.71222678e-02]],

       [[-1.52572945e-01],
        [-5.73254144e-03],
        [ 8.77205224e-04]],

       [[-1.48659600e-02],
        [-3.55242416e-02],
        [-8.68179556e-03]],

       [[-3.29800323e-02],
        [-4.67134230e-02],
        [-2.36211810e-02]],

       [[-1.24048576e-01],
        [-9.00121927e-02],
        [-6.83417171e-02]],

       [[-3.59148681e-01],
        [-1.81233063e-01],
        [-7.76197463e-02]],

       [[-7.66206622e-01],
        [-2.59451956e-01],
        [-9.81276706e-02]],

       [[-6.37614787e-01],
        [-1.77182242e-01],
        [ 8.96288082e-02]],

       [[-8.49635229e-02],
        [-1.89616494e-02],
        [ 4.94053029e-03]],

       [[-4.97516468e-02],
        [-1.89913571e-01],
        [-3.43041830e-02]],

       [[-7.56025761e-02],
        [-1.92730442e-01],
        [-7.27757290e-02]],

       [[-1.79572478e-01],
        [-2.58798122e-01],
        [-7.43032172e-02]],

       [[-5.31525731e-01],
        [-4.25486326e-01],
        [-8.02677125e-02]],

       [[-7.02468157e-01],
        [-3.77249002e-01],
        [-3.42348800e-03]],

       [[-3.64595503e-01],
        [-1.89853325e-01],
        [ 1.01962291e-01]],

       [[ 2.70426013e-02],
        [ 2.10764911e-02],
        [ 9.31503251e-03]],

       [[-1.21067148e-02],
        [-6.31832302e-01],
        [-6.72628288e-04]],

       [[-1.39715523e-01],
        [-6.09275937e-01],
        [-2.59980001e-02]],

       [[-3.45903367e-01],
        [-6.76073670e-01],
        [-1.71647985e-02]],

       [[-5.37844062e-01],
        [-5.82973003e-01],
        [-1.84091106e-02]],

       [[-6.00875616e-01],
        [-4.18449163e-01],
        [ 1.60317346e-02]],

       [[-8.85729343e-02],
        [-1.29932135e-01],
        [ 2.82448661e-02]],

       [[ 1.67161122e-01],
        [ 1.05842225e-01],
        [-1.81056093e-02]],

       [[-4.57078442e-02],
        [ 7.03080416e-01],
        [ 3.13296309e-03]],

       [[-1.48774832e-01],
        [ 6.79989636e-01],
        [ 1.51173333e-02]],

       [[-2.48857588e-01],
        [ 5.61667621e-01],
        [ 6.45473553e-03]],

       [[-1.24767460e-01],
        [ 2.39037484e-01],
        [-1.40438778e-02]],

       [[ 5.63721843e-02],
        [-2.11431794e-02],
        [-2.93487888e-02]],

       [[ 6.17948711e-01],
        [-3.81924510e-01],
        [-9.91092846e-02]],

       [[ 8.59901965e-01],
        [-6.84642434e-01],
        [ 3.40913609e-02]],

       [[-2.53101438e-03],
        [ 7.45823562e-01],
        [-1.52256265e-02]],

       [[-1.57594159e-01],
        [ 7.29616582e-01],
        [ 2.42143944e-02]],

       [[-3.34356129e-01],
        [ 6.99382603e-01],
        [ 1.16620231e-02]],

       [[-4.43156093e-01],
        [ 5.67836940e-01],
        [-7.12408349e-02]],

       [[-1.34625405e-01],
        [ 1.53139755e-01],
        [-1.08747229e-01]],

       [[ 1.58859149e-01],
        [-1.20616794e-01],
        [-1.80642486e-01]],

       [[ 6.69179916e-01],
        [-6.07308626e-01],
        [-5.10463342e-02]],

       [[-3.33366878e-02],
        [ 3.98689449e-01],
        [ 2.23129038e-02]],

       [[-1.11694880e-01],
        [ 4.28348392e-01],
        [ 7.19099864e-02]],

       [[-3.13087165e-01],
        [ 5.70961297e-01],
        [ 1.05241828e-01]],

       [[-5.59950054e-01],
        [ 5.98412454e-01],
        [ 9.47958604e-02]],

       [[-5.36258280e-01],
        [ 4.17571753e-01],
        [-1.01833962e-01]],

       [[-8.34017843e-02],
        [ 5.81482351e-02],
        [-9.71787050e-02]],

       [[ 1.18520766e-01],
        [-9.41252783e-02],
        [-3.35650817e-02]],

       [[-4.24881279e-02],
        [ 1.25788748e-01],
        [ 2.70677619e-02]],

       [[-6.07932098e-02],
        [ 1.37658879e-01],
        [ 5.76710291e-02]],

       [[-1.34802148e-01],
        [ 1.53564110e-01],
        [ 7.06899017e-02]],

       [[-5.04206717e-01],
        [ 3.55833322e-01],
        [ 1.01715736e-01]],

       [[-7.35196173e-01],
        [ 3.83259028e-01],
        [ 5.94890565e-02]],

       [[-4.46670651e-01],
        [ 1.94556490e-01],
        [-1.10164292e-01]],

       [[-1.96939390e-02],
        [-6.73647877e-03],
        [-1.02061685e-02]],

       [[-8.83327425e-03],
        [ 1.81026589e-02],
        [ 4.72642202e-03]],

       [[-2.40257010e-02],
        [ 2.57614944e-02],
        [ 1.54687557e-02]],

       [[-1.06313661e-01],
        [ 5.45684099e-02],
        [ 5.62849492e-02]],

       [[-2.95279980e-01],
        [ 1.02583997e-01],
        [ 6.62308410e-02]],

       [[-7.81402528e-01],
        [ 1.84379280e-01],
        [ 1.09448001e-01]],

       [[-6.98797107e-01],
        [ 1.39711350e-01],
        [-7.07118511e-02]],

       [[-1.21171914e-01],
        [ 1.79738924e-02],
        [-2.92815128e-03]],

       [[-2.86120316e-03],
        [-2.58006062e-03],
        [ 1.22508453e-03]],

       [[-1.66983716e-02],
        [-4.32968372e-03],
        [ 7.82868546e-03]],

       [[-8.77608955e-02],
        [-1.05958404e-02],
        [ 4.39706184e-02]],

       [[-2.41624102e-01],
        [-2.05593128e-02],
        [ 6.06106929e-02]],

       [[-7.85465777e-01],
        [-4.28840518e-02],
        [ 1.12276621e-01]],

       [[-7.45051682e-01],
        [-3.40887271e-02],
        [-5.71222939e-02]],

       [[-1.52572945e-01],
        [-5.73254097e-03],
        [-8.77208193e-04]],

       [[-1.48659637e-02],
        [-3.55242379e-02],
        [ 8.68177973e-03]],

       [[-3.29800285e-02],
        [-4.67134230e-02],
        [ 2.36211810e-02]],

       [[-1.24048576e-01],
        [-9.00121927e-02],
        [ 6.83417022e-02]],

       [[-3.59148651e-01],
        [-1.81233048e-01],
        [ 7.76197687e-02]],

       [[-7.66206622e-01],
        [-2.59451985e-01],
        [ 9.81276259e-02]],

       [[-6.37614787e-01],
        [-1.77182242e-01],
        [-8.96288157e-02]],

       [[-8.49635229e-02],
        [-1.89616401e-02],
        [-4.94047860e-03]],

       [[-4.97516468e-02],
        [-1.89913601e-01],
        [ 3.43041793e-02]],

       [[-7.56025836e-02],
        [-1.92730442e-01],
        [ 7.27757439e-02]],

       [[-1.79572463e-01],
        [-2.58798122e-01],
        [ 7.43032545e-02]],

       [[-5.31525791e-01],
        [-4.25486326e-01],
        [ 8.02677348e-02]],

       [[-7.02468157e-01],
        [-3.77249002e-01],
        [ 3.42349731e-03]],

       [[-3.64595503e-01],
        [-1.89853325e-01],
        [-1.01962246e-01]],

       [[ 2.70425957e-02],
        [ 2.10764799e-02],
        [-9.31497943e-03]],

       [[-1.21066980e-02],
        [-6.31832302e-01],
        [ 6.72676426e-04]],

       [[-1.39715537e-01],
        [-6.09275877e-01],
        [ 2.59980578e-02]],

       [[-3.45903367e-01],
        [-6.76073670e-01],
        [ 1.71648134e-02]],

       [[-5.37844002e-01],
        [-5.82973003e-01],
        [ 1.84091292e-02]],

       [[-6.00875616e-01],
        [-4.18449104e-01],
        [-1.60316862e-02]],

       [[-8.85729343e-02],
        [-1.29932135e-01],
        [-2.82448437e-02]],

       [[ 1.67161107e-01],
        [ 1.05842188e-01],
        [ 1.81056485e-02]]], dtype=float32)}, 'original_shapes': array([[126]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/4'), 'inference_time': 0.001119375228881836, 'inference_start_datetime': '2025-01-24_06-58-17.017657', 'dict_answer': {'grad': array([[[ 6.12870343e-02],
        [ 6.95255518e-01],
        [-0.00000000e+00]],

       [[-8.19502026e-02],
        [ 6.85092628e-01],
        [-0.00000000e+00]],

       [[-1.71857581e-01],
        [ 5.24934411e-01],
        [-0.00000000e+00]],

       [[-8.29025283e-02],
        [ 1.54912189e-01],
        [-0.00000000e+00]],

       [[ 3.13324124e-01],
        [-4.21742380e-01],
        [ 0.00000000e+00]],

       [[ 8.73692274e-01],
        [-9.19001639e-01],
        [ 0.00000000e+00]],

       [[ 8.43493402e-01],
        [-7.28111863e-01],
        [ 0.00000000e+00]],

       [[ 8.44395161e-02],
        [ 7.58880019e-01],
        [-0.00000000e+00]],

       [[-1.14742577e-01],
        [ 7.59933174e-01],
        [-0.00000000e+00]],

       [[-3.12428772e-01],
        [ 7.56029665e-01],
        [-0.00000000e+00]],

       [[-4.40098703e-01],
        [ 6.51507497e-01],
        [-0.00000000e+00]],

       [[-2.84468263e-01],
        [ 3.03346336e-01],
        [-0.00000000e+00]],

       [[ 3.61470968e-01],
        [-3.01219255e-01],
        [ 0.00000000e+00]],

       [[ 1.10269129e+00],
        [-7.54087746e-01],
        [ 0.00000000e+00]],

       [[ 6.14183731e-02],
        [ 4.07220453e-01],
        [-0.00000000e+00]],

       [[-8.45378488e-02],
        [ 4.13053125e-01],
        [-0.00000000e+00]],

       [[-2.71719992e-01],
        [ 4.85079974e-01],
        [-0.00000000e+00]],

       [[-5.11681199e-01],
        [ 5.58821023e-01],
        [-0.00000000e+00]],

       [[-6.27908230e-01],
        [ 4.93975133e-01],
        [-0.00000000e+00]],

       [[-2.32214645e-01],
        [ 1.42758787e-01],
        [-0.00000000e+00]],

       [[ 7.67111480e-01],
        [-3.87017339e-01],
        [ 0.00000000e+00]],

       [[ 2.88335700e-02],
        [ 1.23213969e-01],
        [-0.00000000e+00]],

       [[-4.07625362e-02],
        [ 1.28364861e-01],
        [-0.00000000e+00]],

       [[-1.71915561e-01],
        [ 1.97804987e-01],
        [-0.00000000e+00]],

       [[-4.31280613e-01],
        [ 3.03573191e-01],
        [-0.00000000e+00]],

       [[-7.14669824e-01],
        [ 3.62363607e-01],
        [-0.00000000e+00]],

       [[-6.02852404e-01],
        [ 2.38866061e-01],
        [-0.00000000e+00]],

       [[ 3.25273395e-01],
        [-1.05767123e-01],
        [ 0.00000000e+00]],

       [[ 7.12793786e-03],
        [ 1.36592109e-02],
        [-0.00000000e+00]],

       [[-1.14092007e-02],
        [ 1.61116607e-02],
        [-0.00000000e+00]],

       [[-9.74556729e-02],
        [ 5.02839349e-02],
        [-0.00000000e+00]],

       [[-3.43358427e-01],
        [ 1.08380556e-01],
        [-0.00000000e+00]],

       [[-6.96942449e-01],
        [ 1.58466026e-01],
        [-0.00000000e+00]],

       [[-7.60922849e-01],
        [ 1.35202363e-01],
        [-0.00000000e+00]],

       [[ 3.72220725e-02],
        [-5.42753702e-03],
        [ 0.00000000e+00]],

       [[ 1.82392029e-03],
        [-8.03797622e-04],
        [-0.00000000e+00]],

       [[-4.21828916e-03],
        [-1.36993721e-03],
        [-0.00000000e+00]],

       [[-7.85143524e-02],
        [-9.31644905e-03],
        [-0.00000000e+00]],

       [[-3.18659127e-01],
        [-2.31317896e-02],
        [-0.00000000e+00]],

       [[-6.85546339e-01],
        [-3.58472019e-02],
        [-0.00000000e+00]],

       [[-7.91240931e-01],
        [-3.23319249e-02],
        [-0.00000000e+00]],

       [[-3.25801261e-02],
        [-1.09253207e-03],
        [-0.00000000e+00]],

       [[ 1.34259136e-02],
        [-3.75615098e-02],
        [-0.00000000e+00]],

       [[-1.99387036e-02],
        [-4.11073565e-02],
        [-0.00000000e+00]],

       [[-1.19576804e-01],
        [-9.00754929e-02],
        [-0.00000000e+00]],

       [[-3.71093541e-01],
        [-1.71011195e-01],
        [-0.00000000e+00]],

       [[-7.06973910e-01],
        [-2.34682217e-01],
        [-0.00000000e+00]],

       [[-7.20806718e-01],
        [-1.86982065e-01],
        [-0.00000000e+00]],

       [[ 1.20395564e-01],
        [ 2.56300978e-02],
        [ 0.00000000e+00]],

       [[ 4.04043533e-02],
        [-2.08271414e-01],
        [-0.00000000e+00]],

       [[-5.63555472e-02],
        [-2.14072838e-01],
        [-0.00000000e+00]],

       [[-2.09356561e-01],
        [-2.90568501e-01],
        [-0.00000000e+00]],

       [[-4.68449175e-01],
        [-3.97746086e-01],
        [-0.00000000e+00]],

       [[-7.02801228e-01],
        [-4.29844707e-01],
        [-0.00000000e+00]],

       [[-4.93515611e-01],
        [-2.35876262e-01],
        [-0.00000000e+00]],

       [[ 4.80596811e-01],
        [ 1.88505024e-01],
        [ 0.00000000e+00]],

       [[ 7.29055703e-02],
        [-5.47642350e-01],
        [-0.00000000e+00]],

       [[-9.98130664e-02],
        [-5.52518904e-01],
        [-0.00000000e+00]],

       [[-3.00428033e-01],
        [-6.07627332e-01],
        [-0.00000000e+00]],

       [[-5.12126625e-01],
        [-6.33659065e-01],
        [-0.00000000e+00]],

       [[-5.36011755e-01],
        [-4.77736324e-01],
        [-0.00000000e+00]],

       [[-2.94454806e-02],
        [-2.05086414e-02],
        [-0.00000000e+00]],

       [[ 9.27963316e-01],
        [ 5.30405104e-01],
        [ 0.00000000e+00]],

       [[ 6.12870343e-02],
        [ 6.95255518e-01],
        [-0.00000000e+00]],

       [[-8.19502026e-02],
        [ 6.85092628e-01],
        [-0.00000000e+00]],

       [[-1.71857581e-01],
        [ 5.24934411e-01],
        [-0.00000000e+00]],

       [[-8.29025283e-02],
        [ 1.54912189e-01],
        [-0.00000000e+00]],

       [[ 3.13324124e-01],
        [-4.21742380e-01],
        [ 0.00000000e+00]],

       [[ 8.73692274e-01],
        [-9.19001639e-01],
        [ 0.00000000e+00]],

       [[ 8.43493402e-01],
        [-7.28111863e-01],
        [ 0.00000000e+00]],

       [[ 8.44395161e-02],
        [ 7.58880019e-01],
        [-0.00000000e+00]],

       [[-1.14742577e-01],
        [ 7.59933174e-01],
        [-0.00000000e+00]],

       [[-3.12428772e-01],
        [ 7.56029665e-01],
        [-0.00000000e+00]],

       [[-4.40098703e-01],
        [ 6.51507497e-01],
        [-0.00000000e+00]],

       [[-2.84468263e-01],
        [ 3.03346336e-01],
        [-0.00000000e+00]],

       [[ 3.61470968e-01],
        [-3.01219255e-01],
        [ 0.00000000e+00]],

       [[ 1.10269129e+00],
        [-7.54087746e-01],
        [ 0.00000000e+00]],

       [[ 6.14183731e-02],
        [ 4.07220453e-01],
        [-0.00000000e+00]],

       [[-8.45378488e-02],
        [ 4.13053125e-01],
        [-0.00000000e+00]],

       [[-2.71719992e-01],
        [ 4.85079974e-01],
        [-0.00000000e+00]],

       [[-5.11681199e-01],
        [ 5.58821023e-01],
        [-0.00000000e+00]],

       [[-6.27908230e-01],
        [ 4.93975133e-01],
        [-0.00000000e+00]],

       [[-2.32214645e-01],
        [ 1.42758787e-01],
        [-0.00000000e+00]],

       [[ 7.67111480e-01],
        [-3.87017339e-01],
        [ 0.00000000e+00]],

       [[ 2.88335700e-02],
        [ 1.23213969e-01],
        [-0.00000000e+00]],

       [[-4.07625362e-02],
        [ 1.28364861e-01],
        [-0.00000000e+00]],

       [[-1.71915561e-01],
        [ 1.97804987e-01],
        [-0.00000000e+00]],

       [[-4.31280613e-01],
        [ 3.03573191e-01],
        [-0.00000000e+00]],

       [[-7.14669824e-01],
        [ 3.62363607e-01],
        [-0.00000000e+00]],

       [[-6.02852404e-01],
        [ 2.38866061e-01],
        [-0.00000000e+00]],

       [[ 3.25273395e-01],
        [-1.05767123e-01],
        [ 0.00000000e+00]],

       [[ 7.12793786e-03],
        [ 1.36592109e-02],
        [-0.00000000e+00]],

       [[-1.14092007e-02],
        [ 1.61116607e-02],
        [-0.00000000e+00]],

       [[-9.74556729e-02],
        [ 5.02839349e-02],
        [-0.00000000e+00]],

       [[-3.43358427e-01],
        [ 1.08380556e-01],
        [-0.00000000e+00]],

       [[-6.96942449e-01],
        [ 1.58466026e-01],
        [-0.00000000e+00]],

       [[-7.60922849e-01],
        [ 1.35202363e-01],
        [-0.00000000e+00]],

       [[ 3.72220725e-02],
        [-5.42753702e-03],
        [ 0.00000000e+00]],

       [[ 1.82392029e-03],
        [-8.03797622e-04],
        [-0.00000000e+00]],

       [[-4.21828916e-03],
        [-1.36993721e-03],
        [-0.00000000e+00]],

       [[-7.85143524e-02],
        [-9.31644905e-03],
        [-0.00000000e+00]],

       [[-3.18659127e-01],
        [-2.31317896e-02],
        [-0.00000000e+00]],

       [[-6.85546339e-01],
        [-3.58472019e-02],
        [-0.00000000e+00]],

       [[-7.91240931e-01],
        [-3.23319249e-02],
        [-0.00000000e+00]],

       [[-3.25801261e-02],
        [-1.09253207e-03],
        [-0.00000000e+00]],

       [[ 1.34259136e-02],
        [-3.75615098e-02],
        [-0.00000000e+00]],

       [[-1.99387036e-02],
        [-4.11073565e-02],
        [-0.00000000e+00]],

       [[-1.19576804e-01],
        [-9.00754929e-02],
        [-0.00000000e+00]],

       [[-3.71093541e-01],
        [-1.71011195e-01],
        [-0.00000000e+00]],

       [[-7.06973910e-01],
        [-2.34682217e-01],
        [-0.00000000e+00]],

       [[-7.20806718e-01],
        [-1.86982065e-01],
        [-0.00000000e+00]],

       [[ 1.20395564e-01],
        [ 2.56300978e-02],
        [ 0.00000000e+00]],

       [[ 4.04043533e-02],
        [-2.08271414e-01],
        [-0.00000000e+00]],

       [[-5.63555472e-02],
        [-2.14072838e-01],
        [-0.00000000e+00]],

       [[-2.09356561e-01],
        [-2.90568501e-01],
        [-0.00000000e+00]],

       [[-4.68449175e-01],
        [-3.97746086e-01],
        [-0.00000000e+00]],

       [[-7.02801228e-01],
        [-4.29844707e-01],
        [-0.00000000e+00]],

       [[-4.93515611e-01],
        [-2.35876262e-01],
        [-0.00000000e+00]],

       [[ 4.80596811e-01],
        [ 1.88505024e-01],
        [ 0.00000000e+00]],

       [[ 7.29055703e-02],
        [-5.47642350e-01],
        [-0.00000000e+00]],

       [[-9.98130664e-02],
        [-5.52518904e-01],
        [-0.00000000e+00]],

       [[-3.00428033e-01],
        [-6.07627332e-01],
        [-0.00000000e+00]],

       [[-5.12126625e-01],
        [-6.33659065e-01],
        [-0.00000000e+00]],

       [[-5.36011755e-01],
        [-4.77736324e-01],
        [-0.00000000e+00]],

       [[-2.94454806e-02],
        [-2.05086414e-02],
        [-0.00000000e+00]],

       [[ 9.27963316e-01],
        [ 5.30405104e-01],
        [ 0.00000000e+00]]], dtype=float32)}, 'loss': 0.12476172298192978, 'raw_loss': 0.01680663786828518, 'output_directory': PosixPath('00_basic_data/inferred/model_2025-01-24_06-58-17.017657/test/4'), 'fem_data': <femio.fem_data.FEMData object at 0x7f37ed8cf880>}]

The predicted data is stored in 00_basic_data/inferred/model_[date]/test ([date] depends on the date when you run this script.)

The structure of the directory is as follows.

00_basic_data/inferred/model_[date]
 ├── log.csv           # Summary file
 ├── settings.yml      # Setting used to prediction (for reproducibility)
 └── test
     ├── 0
     │   ├── grad.npy  # Predicted gradient
     │   ├── mesh.inp  # AVD UCD format file for visualization
     │   └── phi.npy   # Input data
     ├── 1
     │   ├── grad.npy
     │   ├── mesh.inp
     │   └── phi.npy
     .
     .
     .

The predicted result will look as follows (left: ground truth, right: prediction). Looks good!

../_images/res.png

Total running time of the script: ( 0 minutes 34.950 seconds)

Gallery generated by Sphinx-Gallery