Basic Usage of SiML

SiML facilitates machine learning processes, including preprocessing, learning, and prediction. We will cover the entire pipeline of a machine learning process using the gradient dataset example.

Import necessary modules including siml. FEMIO is used to generate data.

import pathlib
import shutil

import femio
import numpy as np
import siml

Clean up old data if exists.

shutil.rmtree('00_basic_data/raw', ignore_errors=True)
shutil.rmtree('00_basic_data/interim', ignore_errors=True)
shutil.rmtree('00_basic_data/preprocessed', ignore_errors=True)
shutil.rmtree('00_basic_data/model', ignore_errors=True)
shutil.rmtree('00_basic_data/inferred', ignore_errors=True)

Data generation

First, we define a function to generate data and call it to create the dataset.

def generate_data(output_directory):
    # Generate a simple mesh
    n_x_element = np.random.randint(5, 10)
    n_y_element = np.random.randint(5, 10)
    n_z_element = 1
    fem_data = femio.generate_brick(
        'hex',
        n_x_element=n_x_element,
        n_y_element=n_y_element,
        n_z_element=n_z_element,
        x_length=n_x_element,
        y_length=n_y_element,
        z_length=n_z_element)

    # Generate scalar field phi and the gradient field associated to it
    scale = 1 / 5
    nodes = np.copy(fem_data.nodes.data)
    nodes[:, -1] = 0.  # Make pseudo 2D
    shift = np.random.rand(1, 3) / scale
    shift[:, -1] = 0
    square_norm = .5 * np.linalg.norm(nodes - shift, axis=1)**2
    phi = np.cos(square_norm * scale)[:, None]
    grad = - np.sin(square_norm * scale)[:, None] * scale * (nodes - shift)

    # Write data
    fem_data.nodal_data.update_data(
        fem_data.nodes.ids, {'phi': phi, 'grad': grad},
        allow_overwrite=False)
    fem_data.write(
        'ucd', output_directory / 'mesh.inp')
    return


n_train_sample = 20
for i in range(n_train_sample):
    generate_data(pathlib.Path(f"00_basic_data/raw/train/{i}"))

n_validation_sample = 5
for i in range(n_validation_sample):
    generate_data(pathlib.Path(f"00_basic_data/raw/validation/{i}"))

n_test_data = 5
for i in range(n_validation_sample):
    generate_data(pathlib.Path(f"00_basic_data/raw/test/{i}"))

Out:

Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/0/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/1/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/2/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/3/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/4/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/5/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/6/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/7/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/8/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/9/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/10/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/11/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/12/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/13/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/14/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/15/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/16/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/17/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/18/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/train/19/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/0/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/1/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/2/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/3/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/validation/4/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/0/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/1/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/2/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/3/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: phi
Creating data: grad
Start writing data
File written in: 00_basic_data/raw/test/4/mesh.inp

If the process finished successfully, the data should look as follows (visualization using ParaView).

../_images/grad_train.png

Here, we consider the task to predict the gradient field (arrows in the figure above) from the input of the scalar field (color map in the figure above).

Data preprocessing

Here, we extract features from the generated dataset. Data generation and feature extraction is something SiML does not manage because the library does not know what simulation to run and what features to extract. Therefore, users should write some code for these two parts, although SiML (and FEMIO) can support it.

Now, define a call-back function to extract features from the dataset. The function takes two arguments, femio.FEMData object representing a sample in the dataset and pathlib.Path object representing an output directory.

def conversion_function(fem_data, raw_directory):

    node = fem_data.nodes.data

    phi = fem_data.nodal_data.get_attribute_data('phi')
    grad = fem_data.nodal_data.get_attribute_data('grad')[..., None]

    # Generate renormalized adjacency matrix based on Kipf and Welling 2016
    nodal_adj = fem_data.calculate_adjacency_matrix_node()
    nodal_nadj = siml.prepost.normalize_adjacency_matrix(nodal_adj)

    # Generate IsoAM based on Horie et al. 2020
    nodal_isoam_x, nodal_isoam_y, nodal_isoam_z = \
        fem_data.calculate_spatial_gradient_adjacency_matrices(
            'nodal', n_hop=1, moment_matrix=True)

    dict_data = {
        'node': node,
        'phi': phi,
        'grad': grad,
        'nodal_nadj': nodal_nadj,
        'nodal_isoam_x': nodal_isoam_x,
        'nodal_isoam_y': nodal_isoam_y,
        'nodal_isoam_z': nodal_isoam_z,
    }
    return dict_data

From here, SiML can manage most of the process. Please download data.yml file and place it in the 00_basic_data directory. SiML uses YAML files as setting files to control its behavior. Basically, each setting component can be omitted, and if so, the default setting will be adopted. The relevant contents of the YAML file are as follows.

data:  # Data directory setting
  raw: 00_basic_data/raw   # Row data
  interim: 00_basic_data/interim  # Extracted features
  preprocessed: 00_basic_data/preprocessed  # Preprocessed data
  inferred: 00_basic_data/inferred  # Predicted data
conversion:  # Feature extraction setting
  file_type: 'ucd'  # File type to be read
  required_file_names:  # Files to be regarded as data
    - '*.inp'

As can be seen, the structure of the directory follows that of the Cookiecutter Data Science.

Now, generate a RawConverter object by feeding the YAML file and perform feature extraction.

settings_yaml = pathlib.Path('00_basic_data/data.yml')
raw_converter = siml.preprocessing.converter.RawConverter.read_settings(
    settings_yaml, conversion_function=conversion_function)
raw_converter.convert()

Out:

# process: 2
Searching: 00_basic_data/raw

{'00_basic_data/raw/validation/4': None, '00_basic_data/raw/train': None, '00_basic_data/raw': None, '00_basic_data/raw/train/19': None, '00_basic_data/raw/test/0': None, '00_basic_data/raw/train/10': None, '00_basic_data/raw/train/15': None, '00_basic_data/raw/test/1': None, '00_basic_data/raw/validation': None, '00_basic_data/raw/train/0': None, '00_basic_data/raw/train/1': None, '00_basic_data/raw/train/14': None, '00_basic_data/raw/train/9': None, '00_basic_data/raw/train/5': None, '00_basic_data/raw/train/16': None, '00_basic_data/raw/test/3': None, '00_basic_data/raw/test/2': None, '00_basic_data/raw/train/13': None, '00_basic_data/raw/train/3': None, '00_basic_data/raw/test/4': None, '00_basic_data/raw/train/17': None, '00_basic_data/raw/train/2': None, '00_basic_data/raw/validation/0': None, '00_basic_data/raw/train/4': None, '00_basic_data/raw/validation/1': None, '00_basic_data/raw/train/7': None, '00_basic_data/raw/train/8': None, '00_basic_data/raw/train/6': None, '00_basic_data/raw/test': None, '00_basic_data/raw/train/18': None, '00_basic_data/raw/validation/3': None, '00_basic_data/raw/validation/2': None, '00_basic_data/raw/train/11': None, '00_basic_data/raw/train/12': None}

Next, perform preprocessing, e.g., scaling of the data. The relevant part of the YAML file is as follows.

preprocess:  # Data scaling setting
  node: std_scale  # Standardization without subtraction of the mean
  phi: standardize   # Standardization
  grad: std_scale
  nodal_nadj: identity  # No scaling
  nodal_isoam_x: identity
  nodal_isoam_y: identity
  nodal_isoam_z: identity
preprocessor = siml.preprocessing.ScalingConverter.read_settings(settings_yaml)
preprocessor.fit_transform()

Training

Then, we move on to the training. Please download isogcn.yml file and place it in the 00_basic_data directory. In the YAML file, the setting for the trainer is written as follows.

trainer:
  output_directory: 00_basic_data/model  # Output directory
  inputs:  # Input data specification
    - name: phi  # Input data name
      dim: 1  # phi's dimention
  support_input:  # Support inputs e.g. adjacency matrix
    - nodal_isoam_x
    - nodal_isoam_y
    - nodal_isoam_z
  outputs:
    - name: grad  # Output data name
      dim: 1  # gradient's dimention (the shape is in [n, 3, 1], so 1)
  prune: false
  n_epoch: 100  # The nmber of epochs
  log_trigger_epoch: 1  # The period to log the training
  stop_trigger_epoch: 5  # The period to condider early stopping
  seed: 0  # The rondom seed
  lazy: false  # If true, data is read lazily rather than on-memory
  batch_size: 4  # The size of the batch
  num_workers: 0  # The number of processes to load data (0 means serial)
  figure_format: png  # Format of the output figures (the default is pdf)

In the same file, the setting for the machine learning model is also written. In this example, we use IsoGCN (Horie et al. ICLR 2021). We can try many machine learning trials with various training and model settings by editing the YAML file.

isogcn_yaml = pathlib.Path('00_basic_data/isogcn.yml')
train_main_setting = siml.setting.MainSetting.read_settings_yaml(
    isogcn_yaml
)
trainer = siml.trainer.Trainer(train_main_setting)
trainer.train()

Out:

Loading data

  0%|                                                    | 0/20 [00:00<?, ?it/s]
 75%|###############################5          | 15/20 [00:00<00:00, 144.83it/s]

Loading data

  0%|                                                     | 0/5 [00:00<?, ?it/s]

Loading data

  0%|                                                     | 0/5 [00:00<?, ?it/s]

num_workers for data_loader: 0
Matrix multiplication mode: A (HW)
Matrix multiplication mode: A (HW)
Output directory: 00_basic_data/model

epoch    train_loss    validation_loss    elapsed_time    tr_DTL/grad    vl_DTL/grad

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

1        1.02680e+00   9.92251e-01        0.08

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

2        1.01594e+00   9.81480e-01        0.41

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

3        1.00331e+00   9.68969e-01        0.64

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

4        9.87929e-01   9.53764e-01        0.90

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

5        9.68606e-01   9.34658e-01        1.16

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

6        9.43401e-01   9.09729e-01        1.42

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

7        9.10226e-01   8.76909e-01        1.66

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

8        8.66902e-01   8.34021e-01        1.92

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

9        8.11975e-01   7.79650e-01        2.19

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

10       7.44092e-01   7.12420e-01        2.47

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

11       6.64525e-01   6.33634e-01        2.92

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

12       5.76499e-01   5.46596e-01        3.19

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

13       4.84109e-01   4.55273e-01        3.47

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

14       3.95083e-01   3.67207e-01        3.75

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

15       3.17662e-01   2.90652e-01        4.02

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

16       2.60509e-01   2.35382e-01        4.29

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

17       2.26966e-01   2.04266e-01        4.57

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

18       2.13990e-01   1.93868e-01        4.86

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

19       2.11366e-01   1.93407e-01        5.15

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

20       2.09313e-01   1.90645e-01        5.44

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

21       2.05258e-01   1.84771e-01        5.92

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

22       2.01059e-01   1.77696e-01        6.21

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

23       1.98654e-01   1.72582e-01        6.49

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

24       1.97558e-01   1.70007e-01        6.76

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

25       1.96407e-01   1.69631e-01        7.04

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

26       1.95208e-01   1.68657e-01        7.32

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

27       1.93959e-01   1.67861e-01        7.60

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

28       1.92700e-01   1.67562e-01        7.89

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

29       1.91635e-01   1.67192e-01        8.17

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

30       1.90717e-01   1.67741e-01        8.46

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

31       1.89706e-01   1.66423e-01        8.74

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

32       1.88687e-01   1.65081e-01        9.22

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

33       1.87811e-01   1.63312e-01        9.51

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

34       1.86745e-01   1.62493e-01        9.80

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

35       1.85658e-01   1.62350e-01        10.08

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

36       1.84627e-01   1.61695e-01        10.37

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

37       1.83601e-01   1.60229e-01        10.66

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

38       1.82545e-01   1.59362e-01        10.95

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

39       1.81468e-01   1.58399e-01        11.23

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

40       1.80434e-01   1.58429e-01        11.52

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

41       1.79298e-01   1.57027e-01        11.82

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

42       1.78208e-01   1.55592e-01        12.30

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

43       1.77116e-01   1.54167e-01        12.58

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

44       1.75887e-01   1.54178e-01        12.86

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

45       1.74697e-01   1.53216e-01        13.13

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

46       1.73484e-01   1.51808e-01        13.42

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

47       1.72267e-01   1.50641e-01        13.70

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

48       1.71022e-01   1.49631e-01        13.98

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

49       1.69774e-01   1.48814e-01        14.26

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

50       1.68569e-01   1.47758e-01        14.54

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

51       1.67290e-01   1.46986e-01        14.82

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

52       1.65936e-01   1.46157e-01        15.10

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

53       1.64705e-01   1.45076e-01        15.59

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

54       1.63553e-01   1.44021e-01        15.87

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

55       1.62258e-01   1.43374e-01        16.15

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

56       1.61100e-01   1.42918e-01        16.44

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

57       1.59686e-01   1.41890e-01        16.72

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

58       1.58638e-01   1.40750e-01        17.00

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

59       1.57440e-01   1.40226e-01        17.29

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

60       1.56527e-01   1.39866e-01        17.58

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

61       1.55241e-01   1.38469e-01        17.86

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

62       1.54595e-01   1.37380e-01        18.19

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

63       1.53415e-01   1.37096e-01        18.48

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

64       1.52688e-01   1.36317e-01        18.97

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

65       1.51750e-01   1.35118e-01        19.26

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

66       1.50961e-01   1.34271e-01        19.59

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

67       1.50278e-01   1.33759e-01        19.87

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

68       1.49315e-01   1.32495e-01        20.17

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

69       1.48521e-01   1.31512e-01        20.46

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

70       1.47984e-01   1.30319e-01        20.76

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

71       1.47125e-01   1.29465e-01        21.05

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

72       1.46637e-01   1.28928e-01        21.34

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

73       1.45697e-01   1.27530e-01        21.62

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

74       1.45561e-01   1.26630e-01        21.91

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

75       1.44222e-01   1.25657e-01        22.39

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

76       1.43809e-01   1.25002e-01        22.69

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

77       1.42958e-01   1.24017e-01        22.95

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

78       1.42370e-01   1.23343e-01        23.21

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

79       1.41733e-01   1.22668e-01        23.49

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

80       1.41010e-01   1.21764e-01        23.76

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

81       1.40497e-01   1.21340e-01        24.02

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

82       1.39706e-01   1.20566e-01        24.29

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

83       1.39071e-01   1.19554e-01        24.56

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

84       1.38348e-01   1.18615e-01        24.82

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

85       1.37615e-01   1.17865e-01        25.06

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

86       1.36886e-01   1.16680e-01        25.50

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

87       1.36101e-01   1.15758e-01        25.75

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

88       1.35255e-01   1.14823e-01        26.00

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

89       1.34393e-01   1.14265e-01        26.25

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

90       1.33404e-01   1.13100e-01        26.50

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

91       1.32427e-01   1.11640e-01        26.75

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

92       1.31359e-01   1.10415e-01        27.01

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

93       1.30202e-01   1.08941e-01        27.28

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

94       1.28964e-01   1.07558e-01        27.54

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

95       1.27656e-01   1.06084e-01        27.81

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

96       1.26266e-01   1.04632e-01        28.07

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

97       1.24881e-01   1.03099e-01        28.54

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

98       1.23313e-01   1.01312e-01        28.82

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

99       1.21815e-01   9.95358e-02        29.09

  0%|                                                     | 0/5 [00:00<?, ?it/s]


evaluating:   0%|                                         | 0/7 [00:00<?, ?it/s]

100      1.20228e-01   9.81823e-02        29.36

0.0981823

The results of the training is stored in 00_basic_data/model. If you remove output_directory line in the YAML file, the output directory will be determined automatically.

00_basic_data/model
├── log.csv               # Logfile of the training
├── network.png           # Network structure figure
├── plot.png              # Loss-epoch plot
├── settings.yml          # Trainin setting file for reproducibility
├── snapshot_epoch_1.pth  # Model parameter at the epoch 1
├── snapshot_epoch_2.pth
├── snapshot_epoch_3.pth
.
.
.

The network structure used in the training is shown below.

../_images/network.png

The loss vs. epoch curve is shown below.

../_images/plot.png

Prediction

Using the trained model, we can make a prediction. In the isogcn YAML file, the setting for inference is also written.

inferer = siml.inferer.Inferer.read_settings_file(
    isogcn_yaml, model_path=trainer.setting.trainer.output_directory)
inferer.infer(
    data_directories=[pathlib.Path('00_basic_data/preprocessed/test')],
)

Out:

Load snapshot file: 00_basic_data/model/snapshot_epoch_100.pth
Matrix multiplication mode: A (HW)
Matrix multiplication mode: A (HW)
--
              Data: 00_basic_data/preprocessed/test/0
Inference time [s]: 1.53303e-03
              Loss: 0.028349842876195908
--
--
              Data: 00_basic_data/preprocessed/test/1
Inference time [s]: 1.42980e-03
              Loss: 0.025160206481814384
--
--
              Data: 00_basic_data/preprocessed/test/2
Inference time [s]: 1.34492e-03
              Loss: 0.021043486893177032
--
--
              Data: 00_basic_data/preprocessed/test/3
Inference time [s]: 1.67084e-03
              Loss: 0.07746448367834091
--
--
              Data: 00_basic_data/preprocessed/test/4
Inference time [s]: 1.48153e-03
              Loss: 0.021889416500926018
--
Parsing data
Reading file: 00_basic_data/raw/test/0/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Parsing data
Reading file: 00_basic_data/raw/test/1/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Parsing data
Reading file: 00_basic_data/raw/test/2/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Parsing data
Reading file: 00_basic_data/raw/test/3/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Parsing data
Reading file: 00_basic_data/raw/test/4/mesh.inp
Creating data: NODE
Creating data: ELEMENT
Creating data: NODE
Creating data: phi
Creating data: grad
Creating data: input_phi
Creating data: answer_grad
Creating data: predicted_grad
Creating data: difference_grad
Creating data: difference_abs_grad
Start writing data
File written in: 00_basic_data/inferred/model_2023-09-19_04-55-47.017497/test/0/mesh.inp
Start writing data
File written in: 00_basic_data/inferred/model_2023-09-19_04-55-47.027976/test/1/mesh.inp
Start writing data
File written in: 00_basic_data/inferred/model_2023-09-19_04-55-47.037850/test/2/mesh.inp
Start writing data
File written in: 00_basic_data/inferred/model_2023-09-19_04-55-47.048116/test/3/mesh.inp
Start writing data
File written in: 00_basic_data/inferred/model_2023-09-19_04-55-47.058400/test/4/mesh.inp

[{'dict_x': {'phi': array([[ 0.75872314],
       [ 0.85963833],
       [ 0.84564465],
       [ 0.70397747],
       [ 0.34683347],
       [-0.26923308],
       [ 0.9386389 ],
       [ 0.98403597],
       [ 0.97891563],
       [ 0.9079199 ],
       [ 0.65297425],
       [ 0.08461409],
       [ 0.9810822 ],
       [ 0.99976647],
       [ 0.99882895],
       [ 0.96237355],
       [ 0.7635654 ],
       [ 0.23967136],
       [ 0.971927  ],
       [ 0.9979335 ],
       [ 0.99585426],
       [ 0.94990075],
       [ 0.73531324],
       [ 0.19802175],
       [ 0.8869036 ],
       [ 0.95324826],
       [ 0.9448118 ],
       [ 0.8469543 ],
       [ 0.55089873],
       [-0.04333517],
       [ 0.60352176],
       [ 0.7319102 ],
       [ 0.7133954 ],
       [ 0.5375612 ],
       [ 0.14028841],
       [-0.46712533],
       [ 0.0052225 ],
       [ 0.17748773],
       [ 0.15106307],
       [-0.07507517],
       [-0.48112306],
       [-0.9038673 ],
       [ 0.75872314],
       [ 0.85963833],
       [ 0.84564465],
       [ 0.70397747],
       [ 0.34683347],
       [-0.26923308],
       [ 0.9386389 ],
       [ 0.98403597],
       [ 0.97891563],
       [ 0.9079199 ],
       [ 0.65297425],
       [ 0.08461409],
       [ 0.9810822 ],
       [ 0.99976647],
       [ 0.99882895],
       [ 0.96237355],
       [ 0.7635654 ],
       [ 0.23967136],
       [ 0.971927  ],
       [ 0.9979335 ],
       [ 0.99585426],
       [ 0.94990075],
       [ 0.73531324],
       [ 0.19802175],
       [ 0.8869036 ],
       [ 0.95324826],
       [ 0.9448118 ],
       [ 0.8469543 ],
       [ 0.55089873],
       [-0.04333517],
       [ 0.60352176],
       [ 0.7319102 ],
       [ 0.7133954 ],
       [ 0.5375612 ],
       [ 0.14028841],
       [-0.46712533],
       [ 0.0052225 ],
       [ 0.17748773],
       [ 0.15106307],
       [-0.07507517],
       [-0.48112306],
       [-0.9038673 ]], dtype=float32)}, 'dict_y': {'grad': array([[[ 8.64577293e-02],
        [ 1.67615905e-01],
        [ 5.75664500e-03]],

       [[ 1.65274572e-02],
        [ 9.24935490e-02],
        [-1.11237159e-02]],

       [[-5.25414273e-02],
        [ 1.00930534e-01],
        [-1.84447393e-02]],

       [[-2.64470458e-01],
        [ 2.06007421e-01],
        [-4.78823632e-02]],

       [[-5.96579969e-01],
        [ 4.27333921e-01],
        [-5.19967347e-04]],

       [[-7.56097376e-01],
        [ 3.91215503e-01],
        [-2.35175211e-02]],

       [[ 1.43553624e-02],
        [ 4.56206165e-02],
        [-1.00025609e-02]],

       [[ 3.59575893e-03],
        [ 2.98391283e-02],
        [-1.62536297e-02]],

       [[-2.28150841e-02],
        [ 3.51968706e-02],
        [-2.29274128e-02]],

       [[-1.33030087e-01],
        [ 8.60925093e-02],
        [-6.83779940e-02]],

       [[-4.34262723e-01],
        [ 1.86322436e-01],
        [-9.48064029e-02]],

       [[-8.41966152e-01],
        [ 2.82630146e-01],
        [-2.20592171e-02]],

       [[ 7.44096050e-03],
        [ 5.86349750e-03],
        [-3.83913750e-03]],

       [[ 2.78781657e-03],
        [ 4.24878951e-03],
        [-5.06815361e-03]],

       [[-1.43060945e-02],
        [ 5.59041277e-03],
        [-1.02387276e-02]],

       [[-8.38897601e-02],
        [ 1.52331777e-02],
        [-3.99569720e-02]],

       [[-3.57004523e-01],
        [ 4.03981209e-02],
        [-1.17178135e-01]],

       [[-8.48368049e-01],
        [ 6.95088506e-02],
        [-3.32189575e-02]],

       [[ 7.89501984e-03],
        [-2.00402495e-02],
        [-6.61779521e-03]],

       [[ 2.45498237e-03],
        [-1.54261002e-02],
        [-9.90340486e-03]],

       [[-1.75246280e-02],
        [-1.95035562e-02],
        [-1.58749651e-02]],

       [[-1.01433314e-01],
        [-4.88596149e-02],
        [-5.08758724e-02]],

       [[-3.75383437e-01],
        [-1.02058582e-01],
        [-1.13503672e-01]],

       [[-8.42550397e-01],
        [-1.60916880e-01],
        [-2.55571418e-02]],

       [[ 1.95642039e-02],
        [-1.31803066e-01],
        [-2.97633894e-02]],

       [[ 5.72678447e-03],
        [-9.40163806e-02],
        [-4.10484336e-02]],

       [[-4.65998463e-02],
        [-1.12423323e-01],
        [-5.44115677e-02]],

       [[-1.91406295e-01],
        [-2.01503754e-01],
        [-1.13052242e-01]],

       [[-4.67502773e-01],
        [-3.04994762e-01],
        [-6.89449385e-02]],

       [[-7.64242053e-01],
        [-3.50986689e-01],
        [-1.30295791e-02]],

       [[ 1.19639210e-01],
        [-4.98168349e-01],
        [-3.27750295e-02]],

       [[ 1.98429152e-02],
        [-3.93819720e-01],
        [-1.06045134e-01]],

       [[-9.23721343e-02],
        [-4.02815163e-01],
        [-1.09808519e-01]],

       [[-2.93268532e-01],
        [-4.87970203e-01],
        [-6.66976050e-02]],

       [[-5.18639088e-01],
        [-5.33371389e-01],
        [-3.06306519e-02]],

       [[-5.75872838e-01],
        [-4.38402683e-01],
        [-2.28353236e-02]],

       [[ 2.17553079e-01],
        [-9.32207525e-01],
        [-5.68543607e-03]],

       [[ 6.60844222e-02],
        [-8.89080703e-01],
        [-2.76321229e-02]],

       [[-1.39594033e-01],
        [-8.61294091e-01],
        [-2.58447453e-02]],

       [[-3.29326540e-01],
        [-7.69461095e-01],
        [-1.49922958e-02]],

       [[-4.22946066e-01],
        [-5.80320418e-01],
        [-2.38791332e-02]],

       [[-4.50004995e-01],
        [-4.58580196e-01],
        [-1.94959119e-02]],

       [[ 8.64577293e-02],
        [ 1.67615905e-01],
        [-5.75663848e-03]],

       [[ 1.65274553e-02],
        [ 9.24935490e-02],
        [ 1.11237261e-02]],

       [[-5.25414273e-02],
        [ 1.00930534e-01],
        [ 1.84447374e-02]],

       [[-2.64470458e-01],
        [ 2.06007436e-01],
        [ 4.78823520e-02]],

       [[-5.96579969e-01],
        [ 4.27333921e-01],
        [ 5.20004658e-04]],

       [[-7.56097376e-01],
        [ 3.91215503e-01],
        [ 2.35175770e-02]],

       [[ 1.43553643e-02],
        [ 4.56206165e-02],
        [ 1.00025646e-02]],

       [[ 3.59575963e-03],
        [ 2.98391283e-02],
        [ 1.62536148e-02]],

       [[-2.28150859e-02],
        [ 3.51968706e-02],
        [ 2.29274314e-02]],

       [[-1.33030087e-01],
        [ 8.60925093e-02],
        [ 6.83779940e-02]],

       [[-4.34262693e-01],
        [ 1.86322436e-01],
        [ 9.48064402e-02]],

       [[-8.41966152e-01],
        [ 2.82630116e-01],
        [ 2.20592469e-02]],

       [[ 7.44096050e-03],
        [ 5.86350076e-03],
        [ 3.83912073e-03]],

       [[ 2.78781541e-03],
        [ 4.24878811e-03],
        [ 5.06814616e-03]],

       [[-1.43060945e-02],
        [ 5.59040904e-03],
        [ 1.02387322e-02]],

       [[-8.38897526e-02],
        [ 1.52331777e-02],
        [ 3.99569720e-02]],

       [[-3.57004523e-01],
        [ 4.03981209e-02],
        [ 1.17178150e-01]],

       [[-8.48368108e-01],
        [ 6.95088506e-02],
        [ 3.32189687e-02]],

       [[ 7.89501797e-03],
        [-2.00402476e-02],
        [ 6.61779707e-03]],

       [[ 2.45498307e-03],
        [-1.54260965e-02],
        [ 9.90338065e-03]],

       [[-1.75246280e-02],
        [-1.95035543e-02],
        [ 1.58749744e-02]],

       [[-1.01433314e-01],
        [-4.88596149e-02],
        [ 5.08758686e-02]],

       [[-3.75383437e-01],
        [-1.02058567e-01],
        [ 1.13503672e-01]],

       [[-8.42550397e-01],
        [-1.60916895e-01],
        [ 2.55571827e-02]],

       [[ 1.95642058e-02],
        [-1.31803066e-01],
        [ 2.97633894e-02]],

       [[ 5.72678214e-03],
        [-9.40163732e-02],
        [ 4.10484523e-02]],

       [[-4.65998538e-02],
        [-1.12423323e-01],
        [ 5.44115566e-02]],

       [[-1.91406325e-01],
        [-2.01503754e-01],
        [ 1.13052242e-01]],

       [[-4.67502773e-01],
        [-3.04994762e-01],
        [ 6.89449385e-02]],

       [[-7.64242053e-01],
        [-3.50986689e-01],
        [ 1.30295958e-02]],

       [[ 1.19639210e-01],
        [-4.98168349e-01],
        [ 3.27749997e-02]],

       [[ 1.98429171e-02],
        [-3.93819749e-01],
        [ 1.06045134e-01]],

       [[-9.23721269e-02],
        [-4.02815163e-01],
        [ 1.09808534e-01]],

       [[-2.93268502e-01],
        [-4.87970263e-01],
        [ 6.66976348e-02]],

       [[-5.18639088e-01],
        [-5.33371389e-01],
        [ 3.06306574e-02]],

       [[-5.75872719e-01],
        [-4.38402593e-01],
        [ 2.28354000e-02]],

       [[ 2.17553109e-01],
        [-9.32207525e-01],
        [ 5.68531873e-03]],

       [[ 6.60844296e-02],
        [-8.89080703e-01],
        [ 2.76321154e-02]],

       [[-1.39594033e-01],
        [-8.61294091e-01],
        [ 2.58447528e-02]],

       [[-3.29326570e-01],
        [-7.69461095e-01],
        [ 1.49922725e-02]],

       [[-4.22946006e-01],
        [-5.80320418e-01],
        [ 2.38791890e-02]],

       [[-4.50004935e-01],
        [-4.58580196e-01],
        [ 1.94959864e-02]]], dtype=float32)}, 'original_shapes': array([[84]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/0'), 'inference_time': 0.0015330314636230469, 'inference_start_datetime': '2023-09-19_04-55-47.017497', 'dict_answer': {'grad': array([[[ 0.17797294],
        [ 0.29789904],
        [-0.        ]],

       [[ 0.03740349],
        [ 0.2336421 ],
        [-0.        ]],

       [[-0.06767341],
        [ 0.24408855],
        [-0.        ]],

       [[-0.23209317],
        [ 0.32479316],
        [-0.        ]],

       [[-0.4940899 ],
        [ 0.4289251 ],
        [-0.        ]],

       [[-0.6999528 ],
        [ 0.44042578],
        [-0.        ]],

       [[ 0.09423067],
        [ 0.08874723],
        [-0.        ]],

       [[ 0.01302927],
        [ 0.04579379],
        [-0.        ]],

       [[-0.02589861],
        [ 0.05255975],
        [-0.        ]],

       [[-0.13697176],
        [ 0.10785069],
        [-0.        ]],

       [[-0.39897987],
        [ 0.19488296],
        [-0.        ]],

       [[-0.7241831 ],
        [ 0.2563892 ],
        [-0.        ]],

       [[ 0.05289125],
        [ 0.01109511],
        [-0.        ]],

       [[ 0.00158204],
        [ 0.00123848],
        [-0.        ]],

       [[-0.00613429],
        [ 0.00277285],
        [-0.        ]],

       [[-0.08879844],
        [ 0.01557337],
        [-0.        ]],

       [[-0.340164  ],
        [ 0.03700808],
        [-0.        ]],

       [[-0.70560646],
        [ 0.05564155],
        [-0.        ]],

       [[ 0.06428178],
        [-0.03357206],
        [-0.        ]],

       [[ 0.00470413],
        [-0.0091684 ],
        [-0.        ]],

       [[-0.01153311],
        [-0.01297929],
        [-0.        ]],

       [[-0.1021386 ],
        [-0.04459739],
        [-0.        ]],

       [[-0.35701966],
        [-0.09670359],
        [-0.        ]],

       [[-0.71239734],
        [-0.13986248],
        [-0.        ]],

       [[ 0.12621084],
        [-0.1583063 ],
        [-0.        ]],

       [[ 0.02212335],
        [-0.10355623],
        [-0.        ]],

       [[-0.04153795],
        [-0.11226926],
        [-0.        ]],

       [[-0.17374277],
        [-0.1821955 ],
        [-0.        ]],

       [[-0.4396438 ],
        [-0.28599787],
        [-0.        ]],

       [[-0.7261067 ],
        [-0.34236613],
        [-0.        ]],

       [[ 0.21784346],
        [-0.4327104 ],
        [-0.        ]],

       [[ 0.04988573],
        [-0.36978823],
        [-0.        ]],

       [[-0.08884921],
        [-0.380295  ],
        [-0.        ]],

       [[-0.27555698],
        [-0.45760798],
        [-0.        ]],

       [[-0.52157986],
        [-0.5373212 ],
        [-0.        ]],

       [[-0.6426208 ],
        [-0.47983995],
        [-0.        ]],

       [[ 0.2732068 ],
        [-0.7426779 ],
        [-0.        ]],

       [[ 0.07204816],
        [-0.7308964 ],
        [-0.        ]],

       [[-0.12533446],
        [-0.73416513],
        [-0.        ]],

       [[-0.32586724],
        [-0.74059206],
        [-0.        ]],

       [[-0.4618116 ],
        [-0.6510798 ],
        [-0.        ]],

       [[-0.3109298 ],
        [-0.3177314 ],
        [-0.        ]],

       [[ 0.17797294],
        [ 0.29789904],
        [-0.        ]],

       [[ 0.03740349],
        [ 0.2336421 ],
        [-0.        ]],

       [[-0.06767341],
        [ 0.24408855],
        [-0.        ]],

       [[-0.23209317],
        [ 0.32479316],
        [-0.        ]],

       [[-0.4940899 ],
        [ 0.4289251 ],
        [-0.        ]],

       [[-0.6999528 ],
        [ 0.44042578],
        [-0.        ]],

       [[ 0.09423067],
        [ 0.08874723],
        [-0.        ]],

       [[ 0.01302927],
        [ 0.04579379],
        [-0.        ]],

       [[-0.02589861],
        [ 0.05255975],
        [-0.        ]],

       [[-0.13697176],
        [ 0.10785069],
        [-0.        ]],

       [[-0.39897987],
        [ 0.19488296],
        [-0.        ]],

       [[-0.7241831 ],
        [ 0.2563892 ],
        [-0.        ]],

       [[ 0.05289125],
        [ 0.01109511],
        [-0.        ]],

       [[ 0.00158204],
        [ 0.00123848],
        [-0.        ]],

       [[-0.00613429],
        [ 0.00277285],
        [-0.        ]],

       [[-0.08879844],
        [ 0.01557337],
        [-0.        ]],

       [[-0.340164  ],
        [ 0.03700808],
        [-0.        ]],

       [[-0.70560646],
        [ 0.05564155],
        [-0.        ]],

       [[ 0.06428178],
        [-0.03357206],
        [-0.        ]],

       [[ 0.00470413],
        [-0.0091684 ],
        [-0.        ]],

       [[-0.01153311],
        [-0.01297929],
        [-0.        ]],

       [[-0.1021386 ],
        [-0.04459739],
        [-0.        ]],

       [[-0.35701966],
        [-0.09670359],
        [-0.        ]],

       [[-0.71239734],
        [-0.13986248],
        [-0.        ]],

       [[ 0.12621084],
        [-0.1583063 ],
        [-0.        ]],

       [[ 0.02212335],
        [-0.10355623],
        [-0.        ]],

       [[-0.04153795],
        [-0.11226926],
        [-0.        ]],

       [[-0.17374277],
        [-0.1821955 ],
        [-0.        ]],

       [[-0.4396438 ],
        [-0.28599787],
        [-0.        ]],

       [[-0.7261067 ],
        [-0.34236613],
        [-0.        ]],

       [[ 0.21784346],
        [-0.4327104 ],
        [-0.        ]],

       [[ 0.04988573],
        [-0.36978823],
        [-0.        ]],

       [[-0.08884921],
        [-0.380295  ],
        [-0.        ]],

       [[-0.27555698],
        [-0.45760798],
        [-0.        ]],

       [[-0.52157986],
        [-0.5373212 ],
        [-0.        ]],

       [[-0.6426208 ],
        [-0.47983995],
        [-0.        ]],

       [[ 0.2732068 ],
        [-0.7426779 ],
        [-0.        ]],

       [[ 0.07204816],
        [-0.7308964 ],
        [-0.        ]],

       [[-0.12533446],
        [-0.73416513],
        [-0.        ]],

       [[-0.32586724],
        [-0.74059206],
        [-0.        ]],

       [[-0.4618116 ],
        [-0.6510798 ],
        [-0.        ]],

       [[-0.3109298 ],
        [-0.3177314 ],
        [-0.        ]]], dtype=float32)}, 'loss': 0.028349842876195908, 'raw_loss': 0.0035004126839339733, 'output_directory': PosixPath('00_basic_data/inferred/model_2023-09-19_04-55-47.017497/test/0'), 'fem_data': <femio.fem_data.FEMData object at 0x7f871a86ca30>}, {'dict_x': {'phi': array([[ 0.27093652],
       [ 0.63745826],
       [ 0.7882894 ],
       [ 0.7985323 ],
       [ 0.6755292 ],
       [ 0.35088053],
       [ 0.6255401 ],
       [ 0.88785064],
       [ 0.9660512 ],
       [ 0.970262  ],
       [ 0.90994024],
       [ 0.688899  ],
       [ 0.76900387],
       [ 0.9619661 ],
       [ 0.9982091 ],
       [ 0.99907446],
       [ 0.974526  ],
       [ 0.82000905],
       [ 0.7699349 ],
       [ 0.96236324],
       [ 0.9982952 ],
       [ 0.99913603],
       [ 0.9748519 ],
       [ 0.8208425 ],
       [ 0.6289461 ],
       [ 0.88985443],
       [ 0.96717185],
       [ 0.97131133],
       [ 0.9117453 ],
       [ 0.69206244],
       [ 0.27794552],
       [ 0.6430573 ],
       [ 0.79275334],
       [ 0.80289865],
       [ 0.6808855 ],
       [ 0.3576966 ],
       [-0.3116106 ],
       [ 0.09977526],
       [ 0.3114995 ],
       [ 0.32744643],
       [ 0.14986213],
       [-0.23064655],
       [ 0.27093652],
       [ 0.63745826],
       [ 0.7882894 ],
       [ 0.7985323 ],
       [ 0.6755292 ],
       [ 0.35088053],
       [ 0.6255401 ],
       [ 0.88785064],
       [ 0.9660512 ],
       [ 0.970262  ],
       [ 0.90994024],
       [ 0.688899  ],
       [ 0.76900387],
       [ 0.9619661 ],
       [ 0.9982091 ],
       [ 0.99907446],
       [ 0.974526  ],
       [ 0.82000905],
       [ 0.7699349 ],
       [ 0.96236324],
       [ 0.9982952 ],
       [ 0.99913603],
       [ 0.9748519 ],
       [ 0.8208425 ],
       [ 0.6289461 ],
       [ 0.88985443],
       [ 0.96717185],
       [ 0.97131133],
       [ 0.9117453 ],
       [ 0.69206244],
       [ 0.27794552],
       [ 0.6430573 ],
       [ 0.79275334],
       [ 0.80289865],
       [ 0.6808855 ],
       [ 0.3576966 ],
       [-0.3116106 ],
       [ 0.09977526],
       [ 0.3114995 ],
       [ 0.32744643],
       [ 0.14986213],
       [-0.23064655]], dtype=float32)}, 'dict_y': {'grad': array([[[ 5.72604001e-01],
        [ 5.49481690e-01],
        [ 1.22320661e-02]],

       [[ 2.63356000e-01],
        [ 2.98870027e-01],
        [-3.22289318e-02]],

       [[ 6.40076846e-02],
        [ 1.63712516e-01],
        [-2.41232496e-02]],

       [[-4.28766198e-02],
        [ 1.54899538e-01],
        [-2.16061715e-02]],

       [[-2.11412564e-01],
        [ 2.62893081e-01],
        [-3.13304663e-02]],

       [[-4.97987181e-01],
        [ 5.22930384e-01],
        [ 1.56556536e-02]],

       [[ 3.24370116e-01],
        [ 2.55387247e-01],
        [-3.11629716e-02]],

       [[ 1.11357108e-01],
        [ 1.04728051e-01],
        [-6.39180169e-02]],

       [[ 2.43773833e-02],
        [ 5.29504158e-02],
        [-2.91695967e-02]],

       [[-1.60279386e-02],
        [ 4.94027548e-02],
        [-2.66139079e-02]],

       [[-8.23293850e-02],
        [ 8.89332816e-02],
        [-5.22270761e-02]],

       [[-2.36226633e-01],
        [ 2.18806118e-01],
        [-3.23380120e-02]],

       [[ 1.88608542e-01],
        [ 6.04065806e-02],
        [-2.55927406e-02]],

       [[ 5.94220050e-02],
        [ 2.23364290e-02],
        [-3.11921760e-02]],

       [[ 1.25236204e-02],
        [ 1.07971132e-02],
        [-1.07828416e-02]],

       [[-8.06163251e-03],
        [ 9.94306058e-03],
        [-8.93200561e-03]],

       [[-4.28177640e-02],
        [ 1.83606613e-02],
        [-2.44688578e-02]],

       [[-1.29741162e-01],
        [ 4.70801257e-02],
        [-1.99233107e-02]],

       [[ 1.87527254e-01],
        [-5.91542423e-02],
        [-2.56567392e-02]],

       [[ 5.90806864e-02],
        [-2.27681007e-02],
        [-3.15953009e-02]],

       [[ 1.26195345e-02],
        [-1.14933737e-02],
        [-1.12177348e-02]],

       [[-8.12616199e-03],
        [-1.06162187e-02],
        [-9.34300851e-03]],

       [[-4.25133444e-02],
        [-1.88309234e-02],
        [-2.48466544e-02]],

       [[-1.28678694e-01],
        [-4.63603400e-02],
        [-1.99835654e-02]],

       [[ 3.22125465e-01],
        [-2.79431254e-01],
        [-4.18398306e-02]],

       [[ 1.23223521e-01],
        [-1.35791510e-01],
        [-7.80711547e-02]],

       [[ 2.92184204e-02],
        [-7.21342862e-02],
        [-3.68495807e-02]],

       [[-1.91270690e-02],
        [-6.72649592e-02],
        [-3.38284634e-02]],

       [[-9.30796191e-02],
        [-1.16574273e-01],
        [-6.47495985e-02]],

       [[-2.36452162e-01],
        [-2.46761307e-01],
        [-4.57039326e-02]],

       [[ 5.23096681e-01],
        [-5.76054275e-01],
        [ 2.97595572e-04]],

       [[ 2.43659198e-01],
        [-4.14661884e-01],
        [-9.40374434e-02]],

       [[ 7.64387622e-02],
        [-3.12877119e-01],
        [-1.15662955e-01]],

       [[-5.28560877e-02],
        [-3.04283202e-01],
        [-1.13678180e-01]],

       [[-1.99520156e-01],
        [-3.92475009e-01],
        [-1.02039248e-01]],

       [[-4.58386153e-01],
        [-5.66221058e-01],
        [-3.96729074e-03]],

       [[ 4.50469077e-01],
        [-6.90617979e-01],
        [-2.72335205e-02]],

       [[ 3.55397016e-01],
        [-8.00482512e-01],
        [-1.81018151e-02]],

       [[ 1.38404980e-01],
        [-7.90108263e-01],
        [-3.37883122e-02]],

       [[-9.88814682e-02],
        [-7.87731647e-01],
        [-3.57655957e-02]],

       [[-3.18954885e-01],
        [-8.12233031e-01],
        [-2.04299968e-02]],

       [[-4.39960092e-01],
        [-7.46896863e-01],
        [-2.29390785e-02]],

       [[ 5.72604001e-01],
        [ 5.49481690e-01],
        [-1.22320587e-02]],

       [[ 2.63356000e-01],
        [ 2.98870027e-01],
        [ 3.22289504e-02]],

       [[ 6.40076846e-02],
        [ 1.63712516e-01],
        [ 2.41232384e-02]],

       [[-4.28766198e-02],
        [ 1.54899538e-01],
        [ 2.16061752e-02]],

       [[-2.11412579e-01],
        [ 2.62893081e-01],
        [ 3.13304625e-02]],

       [[-4.97987181e-01],
        [ 5.22930384e-01],
        [-1.56556778e-02]],

       [[ 3.24370116e-01],
        [ 2.55387276e-01],
        [ 3.11629716e-02]],

       [[ 1.11357108e-01],
        [ 1.04728051e-01],
        [ 6.39180169e-02]],

       [[ 2.43773833e-02],
        [ 5.29504158e-02],
        [ 2.91696154e-02]],

       [[-1.60279367e-02],
        [ 4.94027510e-02],
        [ 2.66139209e-02]],

       [[-8.23293924e-02],
        [ 8.89332816e-02],
        [ 5.22270948e-02]],

       [[-2.36226648e-01],
        [ 2.18806118e-01],
        [ 3.23380120e-02]],

       [[ 1.88608542e-01],
        [ 6.04065917e-02],
        [ 2.55927481e-02]],

       [[ 5.94220050e-02],
        [ 2.23364308e-02],
        [ 3.11921518e-02]],

       [[ 1.25236176e-02],
        [ 1.07971132e-02],
        [ 1.07828369e-02]],

       [[-8.06163065e-03],
        [ 9.94305778e-03],
        [ 8.93199258e-03]],

       [[-4.28177714e-02],
        [ 1.83606558e-02],
        [ 2.44688429e-02]],

       [[-1.29741162e-01],
        [ 4.70801182e-02],
        [ 1.99233163e-02]],

       [[ 1.87527254e-01],
        [-5.91542386e-02],
        [ 2.56567337e-02]],

       [[ 5.90806864e-02],
        [-2.27681007e-02],
        [ 3.15952972e-02]],

       [[ 1.26195326e-02],
        [-1.14933709e-02],
        [ 1.12177376e-02]],

       [[-8.12616292e-03],
        [-1.06162215e-02],
        [ 9.34298895e-03]],

       [[-4.25133444e-02],
        [-1.88309252e-02],
        [ 2.48466674e-02]],

       [[-1.28678694e-01],
        [-4.63603400e-02],
        [ 1.99835673e-02]],

       [[ 3.22125465e-01],
        [-2.79431283e-01],
        [ 4.18398380e-02]],

       [[ 1.23223528e-01],
        [-1.35791495e-01],
        [ 7.80711621e-02]],

       [[ 2.92184204e-02],
        [-7.21342787e-02],
        [ 3.68495844e-02]],

       [[-1.91270672e-02],
        [-6.72649592e-02],
        [ 3.38284858e-02]],

       [[-9.30796191e-02],
        [-1.16574273e-01],
        [ 6.47496209e-02]],

       [[-2.36452132e-01],
        [-2.46761307e-01],
        [ 4.57039215e-02]],

       [[ 5.23096681e-01],
        [-5.76054215e-01],
        [-2.97592633e-04]],

       [[ 2.43659198e-01],
        [-4.14661884e-01],
        [ 9.40374658e-02]],

       [[ 7.64387697e-02],
        [-3.12877119e-01],
        [ 1.15662947e-01]],

       [[-5.28560877e-02],
        [-3.04283202e-01],
        [ 1.13678187e-01]],

       [[-1.99520171e-01],
        [-3.92475009e-01],
        [ 1.02039278e-01]],

       [[-4.58386153e-01],
        [-5.66221058e-01],
        [ 3.96727677e-03]],

       [[ 4.50469017e-01],
        [-6.90617979e-01],
        [ 2.72334721e-02]],

       [[ 3.55397016e-01],
        [-8.00482571e-01],
        [ 1.81018021e-02]],

       [[ 1.38404980e-01],
        [-7.90108263e-01],
        [ 3.37883085e-02]],

       [[-9.88814533e-02],
        [-7.87731588e-01],
        [ 3.57655659e-02]],

       [[-3.18954825e-01],
        [-8.12233031e-01],
        [ 2.04300173e-02]],

       [[-4.39960152e-01],
        [-7.46896863e-01],
        [ 2.29391288e-02]]], dtype=float32)}, 'original_shapes': array([[84]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/1'), 'inference_time': 0.0014297962188720703, 'inference_start_datetime': '2023-09-19_04-55-47.027976', 'dict_answer': {'grad': array([[[ 0.49749824],
        [ 0.48270187],
        [-0.        ]],

       [[ 0.24411201],
        [ 0.38636562],
        [-0.        ]],

       [[ 0.07188547],
        [ 0.30854928],
        [-0.        ]],

       [[-0.05006489],
        [ 0.30185348],
        [-0.        ]],

       [[-0.20879133],
        [ 0.3697415 ],
        [-0.        ]],

       [[-0.45245102],
        [ 0.4695752 ],
        [-0.        ]],

       [[ 0.40322593],
        [ 0.23519494],
        [-0.        ]],

       [[ 0.14578314],
        [ 0.1387103 ],
        [-0.        ]],

       [[ 0.03018288],
        [ 0.07788183],
        [-0.        ]],

       [[-0.02013211],
        [ 0.07297   ],
        [-0.        ]],

       [[-0.11744213],
        [ 0.12502642],
        [-0.        ]],

       [[-0.35022998],
        [ 0.21851389],
        [-0.        ]],

       [[ 0.33037996],
        [ 0.06485629],
        [-0.        ]],

       [[ 0.08654791],
        [ 0.02771513],
        [-0.        ]],

       [[ 0.00698884],
        [ 0.00606931],
        [-0.        ]],

       [[-0.00357755],
        [ 0.00436415],
        [-0.        ]],

       [[-0.06350804],
        [ 0.0227544 ],
        [-0.        ]],

       [[-0.27654314],
        [ 0.05806942],
        [-0.        ]],

       [[ 0.32980025],
        [-0.06288201],
        [-0.        ]],

       [[ 0.08610352],
        [-0.02678047],
        [-0.        ]],

       [[ 0.00681883],
        [-0.0057515 ],
        [-0.        ]],

       [[-0.00345641],
        [-0.00409521],
        [-0.        ]],

       [[-0.06310569],
        [-0.0219605 ],
        [-0.        ]],

       [[-0.27596527],
        [-0.05628285],
        [-0.        ]],

       [[ 0.4018082 ],
        [-0.2321013 ],
        [-0.        ]],

       [[ 0.14455155],
        [-0.13620827],
        [-0.        ]],

       [[ 0.029689  ],
        [-0.07586657],
        [-0.        ]],

       [[-0.019779  ],
        [-0.07099679],
        [-0.        ]],

       [[-0.11631414],
        [-0.122628  ],
        [-0.        ]],

       [[-0.34877095],
        [-0.21549901],
        [-0.        ]],

       [[ 0.4964644 ],
        [-0.47889805],
        [-0.        ]],

       [[ 0.24263345],
        [-0.38179266],
        [-0.        ]],

       [[ 0.07121231],
        [-0.30388272],
        [-0.        ]],

       [[-0.04957947],
        [-0.2971888 ],
        [-0.        ]],

       [[-0.2073915 ],
        [-0.3651273 ],
        [-0.        ]],

       [[-0.4512033 ],
        [-0.46555758],
        [-0.        ]],

       [[ 0.4910961 ],
        [-0.66376173],
        [-0.        ]],

       [[ 0.3152481 ],
        [-0.6950565 ],
        [-0.        ]],

       [[ 0.11101641],
        [-0.6637872 ],
        [-0.        ]],

       [[-0.07858568],
        [-0.66003144],
        [-0.        ]],

       [[-0.27997303],
        [-0.6906535 ],
        [-0.        ]],

       [[-0.47014347],
        [-0.6797078 ],
        [-0.        ]],

       [[ 0.49749824],
        [ 0.48270187],
        [-0.        ]],

       [[ 0.24411201],
        [ 0.38636562],
        [-0.        ]],

       [[ 0.07188547],
        [ 0.30854928],
        [-0.        ]],

       [[-0.05006489],
        [ 0.30185348],
        [-0.        ]],

       [[-0.20879133],
        [ 0.3697415 ],
        [-0.        ]],

       [[-0.45245102],
        [ 0.4695752 ],
        [-0.        ]],

       [[ 0.40322593],
        [ 0.23519494],
        [-0.        ]],

       [[ 0.14578314],
        [ 0.1387103 ],
        [-0.        ]],

       [[ 0.03018288],
        [ 0.07788183],
        [-0.        ]],

       [[-0.02013211],
        [ 0.07297   ],
        [-0.        ]],

       [[-0.11744213],
        [ 0.12502642],
        [-0.        ]],

       [[-0.35022998],
        [ 0.21851389],
        [-0.        ]],

       [[ 0.33037996],
        [ 0.06485629],
        [-0.        ]],

       [[ 0.08654791],
        [ 0.02771513],
        [-0.        ]],

       [[ 0.00698884],
        [ 0.00606931],
        [-0.        ]],

       [[-0.00357755],
        [ 0.00436415],
        [-0.        ]],

       [[-0.06350804],
        [ 0.0227544 ],
        [-0.        ]],

       [[-0.27654314],
        [ 0.05806942],
        [-0.        ]],

       [[ 0.32980025],
        [-0.06288201],
        [-0.        ]],

       [[ 0.08610352],
        [-0.02678047],
        [-0.        ]],

       [[ 0.00681883],
        [-0.0057515 ],
        [-0.        ]],

       [[-0.00345641],
        [-0.00409521],
        [-0.        ]],

       [[-0.06310569],
        [-0.0219605 ],
        [-0.        ]],

       [[-0.27596527],
        [-0.05628285],
        [-0.        ]],

       [[ 0.4018082 ],
        [-0.2321013 ],
        [-0.        ]],

       [[ 0.14455155],
        [-0.13620827],
        [-0.        ]],

       [[ 0.029689  ],
        [-0.07586657],
        [-0.        ]],

       [[-0.019779  ],
        [-0.07099679],
        [-0.        ]],

       [[-0.11631414],
        [-0.122628  ],
        [-0.        ]],

       [[-0.34877095],
        [-0.21549901],
        [-0.        ]],

       [[ 0.4964644 ],
        [-0.47889805],
        [-0.        ]],

       [[ 0.24263345],
        [-0.38179266],
        [-0.        ]],

       [[ 0.07121231],
        [-0.30388272],
        [-0.        ]],

       [[-0.04957947],
        [-0.2971888 ],
        [-0.        ]],

       [[-0.2073915 ],
        [-0.3651273 ],
        [-0.        ]],

       [[-0.4512033 ],
        [-0.46555758],
        [-0.        ]],

       [[ 0.4910961 ],
        [-0.66376173],
        [-0.        ]],

       [[ 0.3152481 ],
        [-0.6950565 ],
        [-0.        ]],

       [[ 0.11101641],
        [-0.6637872 ],
        [-0.        ]],

       [[-0.07858568],
        [-0.66003144],
        [-0.        ]],

       [[-0.27997303],
        [-0.6906535 ],
        [-0.        ]],

       [[-0.47014347],
        [-0.6797078 ],
        [-0.        ]]], dtype=float32)}, 'loss': 0.025160206481814384, 'raw_loss': 0.0031065817456692457, 'output_directory': PosixPath('00_basic_data/inferred/model_2023-09-19_04-55-47.027976/test/1'), 'fem_data': <femio.fem_data.FEMData object at 0x7f871a759f10>}, {'dict_x': {'phi': array([[-0.9182207 ],
       [-0.36942962],
       [ 0.20530377],
       [ 0.55797476],
       [ 0.7012238 ],
       [ 0.69057363],
       [-0.6492445 ],
       [ 0.07849772],
       [ 0.61607325],
       [ 0.8668839 ],
       [ 0.94384664],
       [ 0.9388432 ],
       [-0.43462065],
       [ 0.3292907 ],
       [ 0.7960385 ],
       [ 0.96511716],
       [ 0.9968227 ],
       [ 0.99553186],
       [-0.38263187],
       [ 0.38252348],
       [ 0.82921135],
       [ 0.97845995],
       [ 0.99974096],
       [ 0.99929345],
       [-0.5104169 ],
       [ 0.24691914],
       [ 0.74107426],
       [ 0.9390437 ],
       [ 0.9862885 ],
       [ 0.9837326 ],
       [-0.7699073 ],
       [-0.09339034],
       [ 0.47207457],
       [ 0.76870364],
       [ 0.87332225],
       [ 0.8660018 ],
       [-0.9182207 ],
       [-0.36942962],
       [ 0.20530377],
       [ 0.55797476],
       [ 0.7012238 ],
       [ 0.69057363],
       [-0.6492445 ],
       [ 0.07849772],
       [ 0.61607325],
       [ 0.8668839 ],
       [ 0.94384664],
       [ 0.9388432 ],
       [-0.43462065],
       [ 0.3292907 ],
       [ 0.7960385 ],
       [ 0.96511716],
       [ 0.9968227 ],
       [ 0.99553186],
       [-0.38263187],
       [ 0.38252348],
       [ 0.82921135],
       [ 0.97845995],
       [ 0.99974096],
       [ 0.99929345],
       [-0.5104169 ],
       [ 0.24691914],
       [ 0.74107426],
       [ 0.9390437 ],
       [ 0.9862885 ],
       [ 0.9837326 ],
       [-0.7699073 ],
       [-0.09339034],
       [ 0.47207457],
       [ 0.76870364],
       [ 0.87332225],
       [ 0.8660018 ]], dtype=float32)}, 'dict_y': {'grad': array([[[ 5.25272369e-01],
        [ 3.42581630e-01],
        [-1.75894722e-02]],

       [[ 5.78462422e-01],
        [ 4.77764696e-01],
        [-5.61172003e-03]],

       [[ 5.29843330e-01],
        [ 5.78067243e-01],
        [ 7.26531446e-03]],

       [[ 2.87939429e-01],
        [ 4.28069472e-01],
        [-3.28380466e-02]],

       [[ 8.63512903e-02],
        [ 2.93255180e-01],
        [-2.80849021e-02]],

       [[-1.12512717e-02],
        [ 3.07666540e-01],
        [ 7.27159204e-04]],

       [[ 5.89087844e-01],
        [ 2.81565338e-01],
        [-2.23400518e-02]],

       [[ 6.48963094e-01],
        [ 3.58893454e-01],
        [-2.13240273e-02]],

       [[ 4.03567225e-01],
        [ 2.83192247e-01],
        [-7.23020360e-02]],

       [[ 1.49243131e-01],
        [ 1.61129594e-01],
        [-9.21525806e-02]],

       [[ 3.82775068e-02],
        [ 8.80659074e-02],
        [-3.72463390e-02]],

       [[ 1.85554847e-02],
        [ 8.16471428e-02],
        [-1.60133392e-02]],

       [[ 6.73211873e-01],
        [ 1.38273925e-01],
        [-2.29388271e-02]],

       [[ 6.62672043e-01],
        [ 1.59394920e-01],
        [-3.52440551e-02]],

       [[ 3.12172949e-01],
        [ 9.63536203e-02],
        [-1.12252317e-01]],

       [[ 7.51297027e-02],
        [ 4.15803045e-02],
        [-4.05141003e-02]],

       [[ 1.59725044e-02],
        [ 1.93539597e-02],
        [-1.17542157e-02]],

       [[ 5.34197642e-03],
        [ 1.51003832e-02],
        [-4.24299343e-03]],

       [[ 6.99839592e-01],
        [-4.13918644e-02],
        [-2.05970854e-02]],

       [[ 6.61547720e-01],
        [-4.54046875e-02],
        [-3.29734050e-02]],

       [[ 2.99428225e-01],
        [-2.53577288e-02],
        [-1.14306964e-01]],

       [[ 5.96375726e-02],
        [-8.23464617e-03],
        [-3.04771438e-02]],

       [[ 1.14395525e-02],
        [-3.71333701e-03],
        [-6.03355421e-03]],

       [[ 1.71538896e-03],
        [-2.65131798e-03],
        [-1.42445124e-03]],

       [[ 6.31419361e-01],
        [-1.98007107e-01],
        [-2.24156305e-02]],

       [[ 6.75085366e-01],
        [-2.41675571e-01],
        [-2.20074859e-02]],

       [[ 3.46742243e-01],
        [-1.40729696e-01],
        [-1.01817295e-01]],

       [[ 8.99979621e-02],
        [-6.08469136e-02],
        [-4.94883135e-02]],

       [[ 1.93267558e-02],
        [-2.90819369e-02],
        [-1.59958862e-02]],

       [[ 7.22192647e-03],
        [-2.57297922e-02],
        [-6.24349061e-03]],

       [[ 5.40055692e-01],
        [-2.77770877e-01],
        [-1.63391773e-02]],

       [[ 6.68936193e-01],
        [-4.27677482e-01],
        [ 1.54610602e-02]],

       [[ 4.94778603e-01],
        [-3.64937454e-01],
        [-7.74901779e-03]],

       [[ 1.87052995e-01],
        [-1.48399666e-01],
        [-4.19550911e-02]],

       [[ 3.84235568e-02],
        [-8.27475190e-02],
        [-1.21942358e-02]],

       [[-3.92893329e-03],
        [-8.90552998e-02],
        [ 3.70875496e-04]],

       [[ 5.25272369e-01],
        [ 3.42581600e-01],
        [ 1.75895430e-02]],

       [[ 5.78462422e-01],
        [ 4.77764696e-01],
        [ 5.61177125e-03]],

       [[ 5.29843330e-01],
        [ 5.78067243e-01],
        [-7.26529397e-03]],

       [[ 2.87939429e-01],
        [ 4.28069472e-01],
        [ 3.28380540e-02]],

       [[ 8.63512903e-02],
        [ 2.93255180e-01],
        [ 2.80848965e-02]],

       [[-1.12512717e-02],
        [ 3.07666540e-01],
        [-7.27156992e-04]],

       [[ 5.89087963e-01],
        [ 2.81565338e-01],
        [ 2.23401356e-02]],

       [[ 6.48963094e-01],
        [ 3.58893484e-01],
        [ 2.13241726e-02]],

       [[ 4.03567225e-01],
        [ 2.83192277e-01],
        [ 7.23020136e-02]],

       [[ 1.49243131e-01],
        [ 1.61129609e-01],
        [ 9.21525806e-02]],

       [[ 3.82775068e-02],
        [ 8.80658999e-02],
        [ 3.72463353e-02]],

       [[ 1.85554847e-02],
        [ 8.16471428e-02],
        [ 1.60133447e-02]],

       [[ 6.73211813e-01],
        [ 1.38273939e-01],
        [ 2.29389034e-02]],

       [[ 6.62671983e-01],
        [ 1.59394920e-01],
        [ 3.52440998e-02]],

       [[ 3.12172949e-01],
        [ 9.63536352e-02],
        [ 1.12252347e-01]],

       [[ 7.51297176e-02],
        [ 4.15803008e-02],
        [ 4.05140929e-02]],

       [[ 1.59725063e-02],
        [ 1.93539560e-02],
        [ 1.17541971e-02]],

       [[ 5.34197642e-03],
        [ 1.51003823e-02],
        [ 4.24301066e-03]],

       [[ 6.99839532e-01],
        [-4.13918719e-02],
        [ 2.05971599e-02]],

       [[ 6.61547720e-01],
        [-4.54046950e-02],
        [ 3.29734311e-02]],

       [[ 2.99428254e-01],
        [-2.53577251e-02],
        [ 1.14306942e-01]],

       [[ 5.96375726e-02],
        [-8.23464897e-03],
        [ 3.04771531e-02]],

       [[ 1.14395544e-02],
        [-3.71333724e-03],
        [ 6.03354163e-03]],

       [[ 1.71538757e-03],
        [-2.65131728e-03],
        [ 1.42444519e-03]],

       [[ 6.31419361e-01],
        [-1.98007107e-01],
        [ 2.24156659e-02]],

       [[ 6.75085366e-01],
        [-2.41675586e-01],
        [ 2.20073629e-02]],

       [[ 3.46742272e-01],
        [-1.40729696e-01],
        [ 1.01817273e-01]],

       [[ 8.99979696e-02],
        [-6.08469136e-02],
        [ 4.94883023e-02]],

       [[ 1.93267558e-02],
        [-2.90819388e-02],
        [ 1.59958899e-02]],

       [[ 7.22192321e-03],
        [-2.57297978e-02],
        [ 6.24348922e-03]],

       [[ 5.40055573e-01],
        [-2.77770877e-01],
        [ 1.63391251e-02]],

       [[ 6.68936193e-01],
        [-4.27677572e-01],
        [-1.54612241e-02]],

       [[ 4.94778633e-01],
        [-3.64937454e-01],
        [ 7.74898520e-03]],

       [[ 1.87052995e-01],
        [-1.48399651e-01],
        [ 4.19550948e-02]],

       [[ 3.84235568e-02],
        [-8.27475190e-02],
        [ 1.21942358e-02]],

       [[-3.92893376e-03],
        [-8.90552998e-02],
        [-3.70880007e-04]]], dtype=float32)}, 'original_shapes': array([[72]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/2'), 'inference_time': 0.001344919204711914, 'inference_start_datetime': '2023-09-19_04-55-47.037850', 'dict_answer': {'grad': array([[[ 0.35058823],
        [ 0.2206001 ],
        [-0.        ]],

       [[ 0.6366995 ],
        [ 0.51757264],
        [-0.        ]],

       [[ 0.47483432],
        [ 0.5451092 ],
        [-0.        ]],

       [[ 0.23664993],
        [ 0.46220902],
        [-0.        ]],

       [[ 0.06072066],
        [ 0.3970895 ],
        [-0.        ]],

       [[-0.08305274],
        [ 0.402838  ],
        [-0.        ]],

       [[ 0.6732418 ],
        [ 0.27150697],
        [-0.        ]],

       [[ 0.683055  ],
        [ 0.35587218],
        [-0.        ]],

       [[ 0.3821624 ],
        [ 0.2811842 ],
        [-0.        ]],

       [[ 0.14215976],
        [ 0.17795502],
        [-0.        ]],

       [[ 0.02813853],
        [ 0.11793829],
        [-0.        ]],

       [[-0.03954137],
        [ 0.12292204],
        [-0.        ]],

       [[ 0.7971955 ],
        [ 0.14137267],
        [-0.        ]],

       [[ 0.6469564 ],
        [ 0.14821906],
        [-0.        ]],

       [[ 0.29364672],
        [ 0.0950077 ],
        [-0.        ]],

       [[ 0.07466248],
        [ 0.04109856],
        [-0.        ]],

       [[ 0.00678389],
        [ 0.01250325],
        [-0.        ]],

       [[-0.01084304],
        [ 0.01482244],
        [-0.        ]],

       [[ 0.8178086 ],
        [-0.03975203],
        [-0.        ]],

       [[ 0.6330592 ],
        [-0.03975396],
        [-0.        ]],

       [[ 0.27117816],
        [-0.02404891],
        [-0.        ]],

       [[ 0.05886942],
        [-0.00888221],
        [-0.        ]],

       [[ 0.00193851],
        [-0.00097931],
        [-0.        ]],

       [[-0.00431586],
        [-0.00161712],
        [-0.        ]],

       [[ 0.761181  ],
        [-0.20898487],
        [-0.        ]],

       [[ 0.6639537 ],
        [-0.23550124],
        [-0.        ]],

       [[ 0.32575384],
        [-0.16317347],
        [-0.        ]],

       [[ 0.09804054],
        [-0.08355189],
        [-0.        ]],

       [[ 0.01405552],
        [-0.04010675],
        [-0.        ]],

       [[-0.02062811],
        [-0.04365706],
        [-0.        ]],

       [[ 0.56487584],
        [-0.2827198 ],
        [-0.        ]],

       [[ 0.68217474],
        [-0.44109008],
        [-0.        ]],

       [[ 0.42770514],
        [-0.39055365],
        [-0.        ]],

       [[ 0.18239571],
        [-0.28336188],
        [-0.        ]],

       [[ 0.04148959],
        [-0.21581712],
        [-0.        ]],

       [[-0.05742007],
        [-0.22153129],
        [-0.        ]],

       [[ 0.35058823],
        [ 0.2206001 ],
        [-0.        ]],

       [[ 0.6366995 ],
        [ 0.51757264],
        [-0.        ]],

       [[ 0.47483432],
        [ 0.5451092 ],
        [-0.        ]],

       [[ 0.23664993],
        [ 0.46220902],
        [-0.        ]],

       [[ 0.06072066],
        [ 0.3970895 ],
        [-0.        ]],

       [[-0.08305274],
        [ 0.402838  ],
        [-0.        ]],

       [[ 0.6732418 ],
        [ 0.27150697],
        [-0.        ]],

       [[ 0.683055  ],
        [ 0.35587218],
        [-0.        ]],

       [[ 0.3821624 ],
        [ 0.2811842 ],
        [-0.        ]],

       [[ 0.14215976],
        [ 0.17795502],
        [-0.        ]],

       [[ 0.02813853],
        [ 0.11793829],
        [-0.        ]],

       [[-0.03954137],
        [ 0.12292204],
        [-0.        ]],

       [[ 0.7971955 ],
        [ 0.14137267],
        [-0.        ]],

       [[ 0.6469564 ],
        [ 0.14821906],
        [-0.        ]],

       [[ 0.29364672],
        [ 0.0950077 ],
        [-0.        ]],

       [[ 0.07466248],
        [ 0.04109856],
        [-0.        ]],

       [[ 0.00678389],
        [ 0.01250325],
        [-0.        ]],

       [[-0.01084304],
        [ 0.01482244],
        [-0.        ]],

       [[ 0.8178086 ],
        [-0.03975203],
        [-0.        ]],

       [[ 0.6330592 ],
        [-0.03975396],
        [-0.        ]],

       [[ 0.27117816],
        [-0.02404891],
        [-0.        ]],

       [[ 0.05886942],
        [-0.00888221],
        [-0.        ]],

       [[ 0.00193851],
        [-0.00097931],
        [-0.        ]],

       [[-0.00431586],
        [-0.00161712],
        [-0.        ]],

       [[ 0.761181  ],
        [-0.20898487],
        [-0.        ]],

       [[ 0.6639537 ],
        [-0.23550124],
        [-0.        ]],

       [[ 0.32575384],
        [-0.16317347],
        [-0.        ]],

       [[ 0.09804054],
        [-0.08355189],
        [-0.        ]],

       [[ 0.01405552],
        [-0.04010675],
        [-0.        ]],

       [[-0.02062811],
        [-0.04365706],
        [-0.        ]],

       [[ 0.56487584],
        [-0.2827198 ],
        [-0.        ]],

       [[ 0.68217474],
        [-0.44109008],
        [-0.        ]],

       [[ 0.42770514],
        [-0.39055365],
        [-0.        ]],

       [[ 0.18239571],
        [-0.28336188],
        [-0.        ]],

       [[ 0.04148959],
        [-0.21581712],
        [-0.        ]],

       [[-0.05742007],
        [-0.22153129],
        [-0.        ]]], dtype=float32)}, 'loss': 0.021043486893177032, 'raw_loss': 0.0025982821825891733, 'output_directory': PosixPath('00_basic_data/inferred/model_2023-09-19_04-55-47.037850/test/2'), 'fem_data': <femio.fem_data.FEMData object at 0x7f86e13187f0>}, {'dict_x': {'phi': array([[-0.04039001],
       [ 0.27399778],
       [ 0.38526586],
       [ 0.30833697],
       [ 0.03138762],
       [-0.43555865],
       [-0.9055652 ],
       [-0.90305537],
       [-0.04476422],
       [ 0.94489455],
       [ 0.51843274],
       [ 0.7597741 ],
       [ 0.83100617],
       [ 0.7826193 ],
       [ 0.5784367 ],
       [ 0.13435185],
       [-0.52037686],
       [-0.9900122 ],
       [-0.58930427],
       [ 0.6066615 ],
       [ 0.8018801 ],
       [ 0.9484737 ],
       [ 0.9791699 ],
       [ 0.9592344 ],
       [ 0.84267324],
       [ 0.49703416],
       [-0.16116807],
       [-0.86438483],
       [-0.84980506],
       [ 0.26329497],
       [ 0.8982861 ],
       [ 0.9906309 ],
       [ 0.9998186 ],
       [ 0.99489397],
       [ 0.9274919 ],
       [ 0.6484874 ],
       [ 0.02354192],
       [-0.7568679 ],
       [-0.93241304],
       [ 0.08092935],
       [ 0.8917834 ],
       [ 0.9885343 ],
       [ 0.99943465],
       [ 0.9933166 ],
       [ 0.92194223],
       [ 0.6373188 ],
       [ 0.0089621 ],
       [-0.7663173 ],
       [-0.92704433],
       [ 0.09545425],
       [ 0.77498394],
       [ 0.93370974],
       [ 0.9693538 ],
       [ 0.9459577 ],
       [ 0.8183209 ],
       [ 0.4586114 ],
       [-0.2041738 ],
       [-0.88554746],
       [-0.82594126],
       [ 0.30523163],
       [ 0.45476457],
       [ 0.71039295],
       [ 0.78827757],
       [ 0.7351942 ],
       [ 0.5174785 ],
       [ 0.06181063],
       [-0.58119917],
       [-0.99765176],
       [-0.5288865 ],
       [ 0.66295844],
       [-0.14199251],
       [ 0.17457531],
       [ 0.2892305 ],
       [ 0.2098009 ],
       [-0.07062139],
       [-0.52501416],
       [-0.9440767 ],
       [-0.8545883 ],
       [ 0.0572625 ],
       [ 0.97333467],
       [-0.04039001],
       [ 0.27399778],
       [ 0.38526586],
       [ 0.30833697],
       [ 0.03138762],
       [-0.43555865],
       [-0.9055652 ],
       [-0.90305537],
       [-0.04476422],
       [ 0.94489455],
       [ 0.51843274],
       [ 0.7597741 ],
       [ 0.83100617],
       [ 0.7826193 ],
       [ 0.5784367 ],
       [ 0.13435185],
       [-0.52037686],
       [-0.9900122 ],
       [-0.58930427],
       [ 0.6066615 ],
       [ 0.8018801 ],
       [ 0.9484737 ],
       [ 0.9791699 ],
       [ 0.9592344 ],
       [ 0.84267324],
       [ 0.49703416],
       [-0.16116807],
       [-0.86438483],
       [-0.84980506],
       [ 0.26329497],
       [ 0.8982861 ],
       [ 0.9906309 ],
       [ 0.9998186 ],
       [ 0.99489397],
       [ 0.9274919 ],
       [ 0.6484874 ],
       [ 0.02354192],
       [-0.7568679 ],
       [-0.93241304],
       [ 0.08092935],
       [ 0.8917834 ],
       [ 0.9885343 ],
       [ 0.99943465],
       [ 0.9933166 ],
       [ 0.92194223],
       [ 0.6373188 ],
       [ 0.0089621 ],
       [-0.7663173 ],
       [-0.92704433],
       [ 0.09545425],
       [ 0.77498394],
       [ 0.93370974],
       [ 0.9693538 ],
       [ 0.9459577 ],
       [ 0.8183209 ],
       [ 0.4586114 ],
       [-0.2041738 ],
       [-0.88554746],
       [-0.82594126],
       [ 0.30523163],
       [ 0.45476457],
       [ 0.71039295],
       [ 0.78827757],
       [ 0.7351942 ],
       [ 0.5174785 ],
       [ 0.06181063],
       [-0.58119917],
       [-0.99765176],
       [-0.5288865 ],
       [ 0.66295844],
       [-0.14199251],
       [ 0.17457531],
       [ 0.2892305 ],
       [ 0.2098009 ],
       [-0.07062139],
       [-0.52501416],
       [-0.9440767 ],
       [-0.8545883 ],
       [ 0.0572625 ],
       [ 0.97333467]], dtype=float32)}, 'dict_y': {'grad': array([[[ 4.06551868e-01],
        [ 8.32901478e-01],
        [-1.06724491e-02]],

       [[ 2.40471944e-01],
        [ 7.92612314e-01],
        [-2.52330322e-02]],

       [[ 2.23271251e-02],
        [ 7.44690359e-01],
        [-3.87708023e-02]],

       [[-2.07566470e-01],
        [ 7.64967859e-01],
        [-2.61823572e-02]],

       [[-3.91801357e-01],
        [ 7.48823464e-01],
        [-6.82600262e-03]],

       [[-5.41839182e-01],
        [ 5.43861210e-01],
        [-3.38463038e-02]],

       [[-4.24824208e-01],
        [ 3.97181541e-01],
        [ 5.52865155e-02]],

       [[ 8.66516903e-02],
        [-7.62311146e-02],
        [-1.28964358e-03]],

       [[ 1.14807808e+00],
        [-5.99269629e-01],
        [ 2.43419595e-02]],

       [[ 4.55612391e-01],
        [-4.28457528e-01],
        [-1.16790067e-02]],

       [[ 3.06462914e-01],
        [ 4.96716738e-01],
        [-2.20344830e-02]],

       [[ 1.19584367e-01],
        [ 3.27268273e-01],
        [-1.10007331e-01]],

       [[ 1.03571871e-02],
        [ 2.68415809e-01],
        [-1.04912952e-01]],

       [[-1.21260740e-01],
        [ 3.10099542e-01],
        [-1.16277210e-01]],

       [[-3.18306506e-01],
        [ 4.19987500e-01],
        [-6.61403239e-02]],

       [[-6.02688313e-01],
        [ 4.79382992e-01],
        [-7.56245703e-02]],

       [[-6.66288018e-01],
        [ 3.59535843e-01],
        [ 4.82478552e-02]],

       [[-8.03263560e-02],
        [ 2.69972999e-02],
        [ 7.51034403e-03]],

       [[ 8.89910698e-01],
        [-2.61952668e-01],
        [ 2.97274023e-01]],

       [[ 1.08541214e+00],
        [-3.32590640e-01],
        [ 9.32162851e-02]],

       [[ 1.13233134e-01],
        [ 1.61173224e-01],
        [-3.67393717e-02]],

       [[ 4.73377816e-02],
        [ 7.88070112e-02],
        [-4.21752855e-02]],

       [[ 2.91485433e-03],
        [ 5.60344011e-02],
        [-2.84141041e-02]],

       [[-5.43906987e-02],
        [ 7.95416161e-02],
        [-4.44602259e-02]],

       [[-2.27223143e-01],
        [ 1.65362582e-01],
        [-1.13380641e-01]],

       [[-5.32386243e-01],
        [ 2.77410120e-01],
        [-6.05959594e-02]],

       [[-7.99425244e-01],
        [ 2.87425369e-01],
        [-9.96338427e-02]],

       [[-2.67379642e-01],
        [ 9.06243622e-02],
        [ 1.02929965e-01]],

       [[ 5.87226272e-01],
        [-9.21523347e-02],
        [ 3.47083777e-01]],

       [[ 1.61745715e+00],
        [-1.51551604e-01],
        [-2.71001253e-02]],

       [[ 5.79859801e-02],
        [ 2.44283509e-02],
        [-1.18157668e-02]],

       [[ 2.17641592e-02],
        [ 1.15507534e-02],
        [-1.52917709e-02]],

       [[ 1.21720438e-03],
        [ 8.17850884e-03],
        [-6.87372731e-03]],

       [[-2.62632780e-02],
        [ 1.20422430e-02],
        [-1.72189493e-02]],

       [[-1.56191751e-01],
        [ 3.86010483e-02],
        [-7.16095790e-02]],

       [[-4.28304225e-01],
        [ 6.78070337e-02],
        [-5.63606955e-02]],

       [[-8.47337663e-01],
        [ 9.59712639e-02],
        [-1.37272298e-01]],

       [[-4.43356842e-01],
        [ 4.10523973e-02],
        [ 1.60246193e-01]],

       [[ 2.96755135e-01],
        [-1.06500657e-02],
        [ 2.39761680e-01]],

       [[ 1.63946366e+00],
        [-7.13110045e-02],
        [ 3.48367766e-02]],

       [[ 6.12207688e-02],
        [-3.48207094e-02],
        [-1.32390531e-02]],

       [[ 2.30675377e-02],
        [-1.66206788e-02],
        [-1.70518570e-02]],

       [[ 1.30001642e-03],
        [-1.19544426e-02],
        [-8.63019563e-03]],

       [[-2.77087856e-02],
        [-1.71758961e-02],
        [-1.90251265e-02]],

       [[-1.64265707e-01],
        [-5.33071309e-02],
        [-7.60753825e-02]],

       [[-4.37562227e-01],
        [-9.22643170e-02],
        [-5.47910258e-02]],

       [[-8.45118344e-01],
        [-1.27767071e-01],
        [-1.36313125e-01]],

       [[-4.27875161e-01],
        [-5.35506569e-02],
        [ 1.58849493e-01]],

       [[ 3.20205510e-01],
        [ 1.64165590e-02],
        [ 2.52749860e-01]],

       [[ 1.64672697e+00],
        [ 9.07320455e-02],
        [ 2.67331302e-02]],

       [[ 1.29530966e-01],
        [-2.03175470e-01],
        [-4.37284820e-02]],

       [[ 5.63477576e-02],
        [-1.02464944e-01],
        [-5.18955961e-02]],

       [[ 3.62658128e-03],
        [-7.26685077e-02],
        [-3.50904055e-02]],

       [[-6.46302179e-02],
        [-1.03451706e-01],
        [-5.43389954e-02]],

       [[-2.33661652e-01],
        [-1.90382004e-01],
        [-1.14944831e-01]],

       [[-5.52709818e-01],
        [-3.14581335e-01],
        [-6.69541061e-02]],

       [[-7.85568178e-01],
        [-3.08407694e-01],
        [-8.40876028e-02]],

       [[-2.39230752e-01],
        [-8.92882273e-02],
        [ 8.19851011e-02]],

       [[ 6.44079685e-01],
        [ 1.15084030e-01],
        [ 3.53278041e-01]],

       [[ 1.57556975e+00],
        [ 1.73797607e-01],
        [-2.06466317e-02]],

       [[ 3.39791268e-01],
        [-5.53726733e-01],
        [-1.22570526e-02]],

       [[ 1.35355905e-01],
        [-3.86993468e-01],
        [-1.06209792e-01]],

       [[ 1.22411326e-02],
        [-3.28468859e-01],
        [-1.15882002e-01]],

       [[-1.30333737e-01],
        [-3.64896178e-01],
        [-1.13124639e-01]],

       [[-3.34200203e-01],
        [-4.73980576e-01],
        [-5.59743494e-02]],

       [[-6.03277981e-01],
        [-4.99651819e-01],
        [-7.58486390e-02]],

       [[-6.25186980e-01],
        [-3.62677157e-01],
        [ 7.75492862e-02]],

       [[-5.97885177e-02],
        [-4.66042012e-03],
        [ 1.05360579e-02]],

       [[ 9.32802677e-01],
        [ 3.17190170e-01],
        [ 2.75648355e-01]],

       [[ 9.73959267e-01],
        [ 3.38950068e-01],
        [ 9.16161239e-02]],

       [[ 3.80859077e-01],
        [-8.25308442e-01],
        [-1.65664386e-02]],

       [[ 2.40436584e-01],
        [-8.43910515e-01],
        [-2.45274678e-02]],

       [[ 2.33432185e-02],
        [-8.25071633e-01],
        [-3.54732573e-02]],

       [[-2.04755351e-01],
        [-8.22440207e-01],
        [-2.31543295e-02]],

       [[-3.76590818e-01],
        [-7.49195457e-01],
        [-1.21020563e-02]],

       [[-5.29372752e-01],
        [-5.30992091e-01],
        [-3.51863988e-02]],

       [[-3.25512588e-01],
        [-3.69530588e-01],
        [ 5.71927913e-02]],

       [[ 1.32106811e-01],
        [ 8.20596665e-02],
        [ 3.20675448e-02]],

       [[ 1.17355025e+00],
        [ 6.91364229e-01],
        [-3.08665592e-04]],

       [[ 3.35911512e-01],
        [ 4.38871443e-01],
        [-1.28153097e-02]],

       [[ 4.06551868e-01],
        [ 8.32901597e-01],
        [ 1.06724119e-02]],

       [[ 2.40471959e-01],
        [ 7.92612314e-01],
        [ 2.52330676e-02]],

       [[ 2.23271195e-02],
        [ 7.44690359e-01],
        [ 3.87708358e-02]],

       [[-2.07566440e-01],
        [ 7.64967859e-01],
        [ 2.61823777e-02]],

       [[-3.91801357e-01],
        [ 7.48823285e-01],
        [ 6.82611205e-03]],

       [[-5.41839182e-01],
        [ 5.43861330e-01],
        [ 3.38463746e-02]],

       [[-4.24824148e-01],
        [ 3.97181511e-01],
        [-5.52864298e-02]],

       [[ 8.66516903e-02],
        [-7.62311295e-02],
        [ 1.28964090e-03]],

       [[ 1.14807820e+00],
        [-5.99269629e-01],
        [-2.43420042e-02]],

       [[ 4.55612391e-01],
        [-4.28457528e-01],
        [ 1.16790216e-02]],

       [[ 3.06462884e-01],
        [ 4.96716738e-01],
        [ 2.20344812e-02]],

       [[ 1.19584374e-01],
        [ 3.27268273e-01],
        [ 1.10007331e-01]],

       [[ 1.03571871e-02],
        [ 2.68415809e-01],
        [ 1.04912966e-01]],

       [[-1.21260732e-01],
        [ 3.10099542e-01],
        [ 1.16277210e-01]],

       [[-3.18306506e-01],
        [ 4.19987500e-01],
        [ 6.61403239e-02]],

       [[-6.02688313e-01],
        [ 4.79382992e-01],
        [ 7.56245926e-02]],

       [[-6.66288018e-01],
        [ 3.59535843e-01],
        [-4.82478216e-02]],

       [[-8.03263634e-02],
        [ 2.69973185e-02],
        [-7.51039106e-03]],

       [[ 8.89910698e-01],
        [-2.61952668e-01],
        [-2.97274113e-01]],

       [[ 1.08541214e+00],
        [-3.32590669e-01],
        [-9.32162330e-02]],

       [[ 1.13233134e-01],
        [ 1.61173210e-01],
        [ 3.67393680e-02]],

       [[ 4.73377854e-02],
        [ 7.88069963e-02],
        [ 4.21752743e-02]],

       [[ 2.91485526e-03],
        [ 5.60344011e-02],
        [ 2.84140985e-02]],

       [[-5.43906987e-02],
        [ 7.95416161e-02],
        [ 4.44602221e-02]],

       [[-2.27223143e-01],
        [ 1.65362582e-01],
        [ 1.13380626e-01]],

       [[-5.32386243e-01],
        [ 2.77410120e-01],
        [ 6.05958924e-02]],

       [[-7.99425244e-01],
        [ 2.87425369e-01],
        [ 9.96337906e-02]],

       [[-2.67379612e-01],
        [ 9.06243622e-02],
        [-1.02929913e-01]],

       [[ 5.87226152e-01],
        [-9.21523347e-02],
        [-3.47083747e-01]],

       [[ 1.61745703e+00],
        [-1.51551634e-01],
        [ 2.71000396e-02]],

       [[ 5.79859838e-02],
        [ 2.44283490e-02],
        [ 1.18157677e-02]],

       [[ 2.17641611e-02],
        [ 1.15507534e-02],
        [ 1.52917849e-02]],

       [[ 1.21720287e-03],
        [ 8.17850791e-03],
        [ 6.87372871e-03]],

       [[-2.62632817e-02],
        [ 1.20422430e-02],
        [ 1.72189400e-02]],

       [[-1.56191751e-01],
        [ 3.86010483e-02],
        [ 7.16095790e-02]],

       [[-4.28304225e-01],
        [ 6.78070411e-02],
        [ 5.63607216e-02]],

       [[-8.47337663e-01],
        [ 9.59712788e-02],
        [ 1.37272328e-01]],

       [[-4.43356842e-01],
        [ 4.10524122e-02],
        [-1.60246179e-01]],

       [[ 2.96755135e-01],
        [-1.06500722e-02],
        [-2.39761710e-01]],

       [[ 1.63946354e+00],
        [-7.13110045e-02],
        [-3.48368473e-02]],

       [[ 6.12207800e-02],
        [-3.48207131e-02],
        [ 1.32390596e-02]],

       [[ 2.30675340e-02],
        [-1.66206788e-02],
        [ 1.70518756e-02]],

       [[ 1.30001584e-03],
        [-1.19544370e-02],
        [ 8.63019936e-03]],

       [[-2.77087837e-02],
        [-1.71758961e-02],
        [ 1.90251265e-02]],

       [[-1.64265692e-01],
        [-5.33071309e-02],
        [ 7.60753900e-02]],

       [[-4.37562227e-01],
        [-9.22643170e-02],
        [ 5.47909960e-02]],

       [[-8.45118403e-01],
        [-1.27767086e-01],
        [ 1.36313125e-01]],

       [[-4.27875161e-01],
        [-5.35506569e-02],
        [-1.58849493e-01]],

       [[ 3.20205569e-01],
        [ 1.64165627e-02],
        [-2.52749920e-01]],

       [[ 1.64672685e+00],
        [ 9.07320455e-02],
        [-2.67332215e-02]],

       [[ 1.29530966e-01],
        [-2.03175440e-01],
        [ 4.37284969e-02]],

       [[ 5.63477576e-02],
        [-1.02464952e-01],
        [ 5.18955924e-02]],

       [[ 3.62658035e-03],
        [-7.26684928e-02],
        [ 3.50904055e-02]],

       [[-6.46302179e-02],
        [-1.03451699e-01],
        [ 5.43389916e-02]],

       [[-2.33661681e-01],
        [-1.90382004e-01],
        [ 1.14944801e-01]],

       [[-5.52709818e-01],
        [-3.14581335e-01],
        [ 6.69540688e-02]],

       [[-7.85568178e-01],
        [-3.08407694e-01],
        [ 8.40876773e-02]],

       [[-2.39230722e-01],
        [-8.92882124e-02],
        [-8.19850639e-02]],

       [[ 6.44079626e-01],
        [ 1.15084030e-01],
        [-3.53278011e-01]],

       [[ 1.57556951e+00],
        [ 1.73797607e-01],
        [ 2.06465572e-02]],

       [[ 3.39791268e-01],
        [-5.53726733e-01],
        [ 1.22570517e-02]],

       [[ 1.35355920e-01],
        [-3.86993468e-01],
        [ 1.06209800e-01]],

       [[ 1.22411307e-02],
        [-3.28468889e-01],
        [ 1.15881979e-01]],

       [[-1.30333737e-01],
        [-3.64896148e-01],
        [ 1.13124609e-01]],

       [[-3.34200203e-01],
        [-4.73980606e-01],
        [ 5.59744015e-02]],

       [[-6.03277981e-01],
        [-4.99651819e-01],
        [ 7.58486539e-02]],

       [[-6.25186980e-01],
        [-3.62677157e-01],
        [-7.75493532e-02]],

       [[-5.97885214e-02],
        [-4.66042338e-03],
        [-1.05361044e-02]],

       [[ 9.32802677e-01],
        [ 3.17190170e-01],
        [-2.75648326e-01]],

       [[ 9.73959208e-01],
        [ 3.38950127e-01],
        [-9.16160792e-02]],

       [[ 3.80859047e-01],
        [-8.25308383e-01],
        [ 1.65664610e-02]],

       [[ 2.40436614e-01],
        [-8.43910515e-01],
        [ 2.45274734e-02]],

       [[ 2.33432241e-02],
        [-8.25071633e-01],
        [ 3.54732759e-02]],

       [[-2.04755351e-01],
        [-8.22440207e-01],
        [ 2.31544003e-02]],

       [[-3.76590818e-01],
        [-7.49195337e-01],
        [ 1.21021252e-02]],

       [[-5.29372871e-01],
        [-5.30992150e-01],
        [ 3.51863541e-02]],

       [[-3.25512588e-01],
        [-3.69530559e-01],
        [-5.71927987e-02]],

       [[ 1.32106796e-01],
        [ 8.20597038e-02],
        [-3.20675261e-02]],

       [[ 1.17355037e+00],
        [ 6.91364348e-01],
        [ 3.08833143e-04]],

       [[ 3.35911483e-01],
        [ 4.38871413e-01],
        [ 1.28154075e-02]]], dtype=float32)}, 'original_shapes': array([[160]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/3'), 'inference_time': 0.00167083740234375, 'inference_start_datetime': '2023-09-19_04-55-47.048116', 'dict_answer': {'grad': array([[[ 4.17607397e-01],
        [ 6.84858859e-01],
        [-0.00000000e+00]],

       [[ 2.09607631e-01],
        [ 6.59187436e-01],
        [-0.00000000e+00]],

       [[ 1.65629219e-02],
        [ 6.32507741e-01],
        [-0.00000000e+00]],

       [[-1.73181504e-01],
        [ 6.52022660e-01],
        [-0.00000000e+00]],

       [[-3.81863326e-01],
        [ 6.85080409e-01],
        [-0.00000000e+00]],

       [[-5.23939729e-01],
        [ 6.16986215e-01],
        [-0.00000000e+00]],

       [[-3.31751734e-01],
        [ 2.90759146e-01],
        [-0.00000000e+00]],

       [[ 4.21814680e-01],
        [-2.94403523e-01],
        [ 0.00000000e+00]],

       [[ 1.18086660e+00],
        [-6.84731066e-01],
        [ 0.00000000e+00]],

       [[ 4.52448875e-01],
        [-2.24388644e-01],
        [ 0.00000000e+00]],

       [[ 3.57395440e-01],
        [ 4.15089995e-01],
        [-0.00000000e+00]],

       [[ 1.41707271e-01],
        [ 3.15612644e-01],
        [-0.00000000e+00]],

       [[ 9.98405740e-03],
        [ 2.70020247e-01],
        [-0.00000000e+00]],

       [[-1.13327205e-01],
        [ 3.02173108e-01],
        [-0.00000000e+00]],

       [[-3.11649889e-01],
        [ 3.95968825e-01],
        [-0.00000000e+00]],

       [[-5.76774478e-01],
        [ 4.81017202e-01],
        [-0.00000000e+00]],

       [[-6.67822540e-01],
        [ 4.14516389e-01],
        [-0.00000000e+00]],

       [[-1.38450921e-01],
        [ 6.84348866e-02],
        [-0.00000000e+00]],

       [[ 9.54992712e-01],
        [-3.92174780e-01],
        [ 0.00000000e+00]],

       [[ 1.09867609e+00],
        [-3.85888129e-01],
        [ 0.00000000e+00]],

       [[ 2.49717921e-01],
        [ 1.70533061e-01],
        [-0.00000000e+00]],

       [[ 6.90582171e-02],
        [ 9.04363841e-02],
        [-0.00000000e+00]],

       [[ 3.64429667e-03],
        [ 5.79520166e-02],
        [-0.00000000e+00]],

       [[-5.14499024e-02],
        [ 8.06625038e-02],
        [-0.00000000e+00]],

       [[-2.05706224e-01],
        [ 1.53676346e-01],
        [-0.00000000e+00]],

       [[-5.05064189e-01],
        [ 2.47666165e-01],
        [-0.00000000e+00]],

       [[-7.71827757e-01],
        [ 2.81686872e-01],
        [-0.00000000e+00]],

       [[-4.93805856e-01],
        [ 1.43517062e-01],
        [-0.00000000e+00]],

       [[ 6.23055816e-01],
        [-1.50443047e-01],
        [ 0.00000000e+00]],

       [[ 1.33328640e+00],
        [-2.75347263e-01],
        [ 0.00000000e+00]],

       [[ 1.83651149e-01],
        [ 3.75336744e-02],
        [-0.00000000e+00]],

       [[ 2.97644231e-02],
        [ 1.16652437e-02],
        [-0.00000000e+00]],

       [[ 3.41825595e-04],
        [ 1.62677676e-03],
        [-0.00000000e+00]],

       [[-1.83736347e-02],
        [ 8.62086378e-03],
        [-0.00000000e+00]],

       [[-1.42827347e-01],
        [ 3.19329835e-02],
        [-0.00000000e+00]],

       [[-4.43072438e-01],
        [ 6.50224611e-02],
        [-0.00000000e+00]],

       [[-7.81834841e-01],
        [ 8.53944644e-02],
        [-0.00000000e+00]],

       [[-6.41837299e-01],
        [ 5.58265485e-02],
        [-0.00000000e+00]],

       [[ 4.27186579e-01],
        [-3.08696218e-02],
        [ 0.00000000e+00]],

       [[ 1.37751818e+00],
        [-8.51379558e-02],
        [ 0.00000000e+00]],

       [[ 1.89106017e-01],
        [-5.18439934e-02],
        [-0.00000000e+00]],

       [[ 3.29094641e-02],
        [-1.73014663e-02],
        [-0.00000000e+00]],

       [[ 6.03454129e-04],
        [-3.85241816e-03],
        [-0.00000000e+00]],

       [[-2.10126825e-02],
        [-1.32252220e-02],
        [-0.00000000e+00]],

       [[-1.47979051e-01],
        [-4.43806946e-02],
        [-0.00000000e+00]],

       [[-4.48529124e-01],
        [-8.82968158e-02],
        [-0.00000000e+00]],

       [[-7.82020152e-01],
        [-1.14577264e-01],
        [-0.00000000e+00]],

       [[-6.30931020e-01],
        [-7.36145154e-02],
        [-0.00000000e+00]],

       [[ 4.43212092e-01],
        [ 4.29626517e-02],
        [ 0.00000000e+00]],

       [[ 1.37574089e+00],
        [ 1.14058658e-01],
        [ 0.00000000e+00]],

       [[ 2.64135420e-01],
        [-1.98809728e-01],
        [-0.00000000e+00]],

       [[ 7.80322850e-02],
        [-1.12630032e-01],
        [-0.00000000e+00]],

       [[ 4.40937467e-03],
        [-7.72829950e-02],
        [-0.00000000e+00]],

       [[-5.90375364e-02],
        [-1.02015816e-01],
        [-0.00000000e+00]],

       [[-2.19588578e-01],
        [-1.80809587e-01],
        [-0.00000000e+00]],

       [[-5.17232537e-01],
        [-2.79549062e-01],
        [-0.00000000e+00]],

       [[-7.65577376e-01],
        [-3.07955086e-01],
        [-0.00000000e+00]],

       [[-4.56210971e-01],
        [-1.46138653e-01],
        [-0.00000000e+00]],

       [[ 6.66388750e-01],
        [ 1.77347437e-01],
        [ 0.00000000e+00]],

       [[ 1.31609750e+00],
        [ 2.99569428e-01],
        [ 0.00000000e+00]],

       [[ 3.72229755e-01],
        [-4.58292633e-01],
        [-0.00000000e+00]],

       [[ 1.53393269e-01],
        [-3.62165451e-01],
        [-0.00000000e+00]],

       [[ 1.10440310e-02],
        [-3.16632390e-01],
        [-0.00000000e+00]],

       [[-1.23404831e-01],
        [-3.48812670e-01],
        [-0.00000000e+00]],

       [[-3.26920062e-01],
        [-4.40325737e-01],
        [-0.00000000e+00]],

       [[-5.80938637e-01],
        [-5.13597906e-01],
        [-0.00000000e+00]],

       [[-6.36403322e-01],
        [-4.18746829e-01],
        [-0.00000000e+00]],

       [[-6.72603324e-02],
        [-3.52435112e-02],
        [-0.00000000e+00]],

       [[ 1.00319839e+00],
        [ 4.36721772e-01],
        [ 0.00000000e+00]],

       [[ 1.03468144e+00],
        [ 3.85244876e-01],
        [ 0.00000000e+00]],

       [[ 4.13713664e-01],
        [-7.07341611e-01],
        [-0.00000000e+00]],

       [[ 2.14601591e-01],
        [-7.03608632e-01],
        [-0.00000000e+00]],

       [[ 1.71813164e-02],
        [-6.84040248e-01],
        [-0.00000000e+00]],

       [[-1.77999839e-01],
        [-6.98678195e-01],
        [-0.00000000e+00]],

       [[-3.81097645e-01],
        [-7.12797701e-01],
        [-0.00000000e+00]],

       [[-4.95380282e-01],
        [-6.08175933e-01],
        [-0.00000000e+00]],

       [[-2.57862478e-01],
        [-2.35615969e-01],
        [-0.00000000e+00]],

       [[ 5.09985209e-01],
        [ 3.71086597e-01],
        [ 0.00000000e+00]],

       [[ 1.18011200e+00],
        [ 7.13409364e-01],
        [ 0.00000000e+00]],

       [[ 3.17028850e-01],
        [ 1.63917944e-01],
        [ 0.00000000e+00]],

       [[ 4.17607397e-01],
        [ 6.84858859e-01],
        [-0.00000000e+00]],

       [[ 2.09607631e-01],
        [ 6.59187436e-01],
        [-0.00000000e+00]],

       [[ 1.65629219e-02],
        [ 6.32507741e-01],
        [-0.00000000e+00]],

       [[-1.73181504e-01],
        [ 6.52022660e-01],
        [-0.00000000e+00]],

       [[-3.81863326e-01],
        [ 6.85080409e-01],
        [-0.00000000e+00]],

       [[-5.23939729e-01],
        [ 6.16986215e-01],
        [-0.00000000e+00]],

       [[-3.31751734e-01],
        [ 2.90759146e-01],
        [-0.00000000e+00]],

       [[ 4.21814680e-01],
        [-2.94403523e-01],
        [ 0.00000000e+00]],

       [[ 1.18086660e+00],
        [-6.84731066e-01],
        [ 0.00000000e+00]],

       [[ 4.52448875e-01],
        [-2.24388644e-01],
        [ 0.00000000e+00]],

       [[ 3.57395440e-01],
        [ 4.15089995e-01],
        [-0.00000000e+00]],

       [[ 1.41707271e-01],
        [ 3.15612644e-01],
        [-0.00000000e+00]],

       [[ 9.98405740e-03],
        [ 2.70020247e-01],
        [-0.00000000e+00]],

       [[-1.13327205e-01],
        [ 3.02173108e-01],
        [-0.00000000e+00]],

       [[-3.11649889e-01],
        [ 3.95968825e-01],
        [-0.00000000e+00]],

       [[-5.76774478e-01],
        [ 4.81017202e-01],
        [-0.00000000e+00]],

       [[-6.67822540e-01],
        [ 4.14516389e-01],
        [-0.00000000e+00]],

       [[-1.38450921e-01],
        [ 6.84348866e-02],
        [-0.00000000e+00]],

       [[ 9.54992712e-01],
        [-3.92174780e-01],
        [ 0.00000000e+00]],

       [[ 1.09867609e+00],
        [-3.85888129e-01],
        [ 0.00000000e+00]],

       [[ 2.49717921e-01],
        [ 1.70533061e-01],
        [-0.00000000e+00]],

       [[ 6.90582171e-02],
        [ 9.04363841e-02],
        [-0.00000000e+00]],

       [[ 3.64429667e-03],
        [ 5.79520166e-02],
        [-0.00000000e+00]],

       [[-5.14499024e-02],
        [ 8.06625038e-02],
        [-0.00000000e+00]],

       [[-2.05706224e-01],
        [ 1.53676346e-01],
        [-0.00000000e+00]],

       [[-5.05064189e-01],
        [ 2.47666165e-01],
        [-0.00000000e+00]],

       [[-7.71827757e-01],
        [ 2.81686872e-01],
        [-0.00000000e+00]],

       [[-4.93805856e-01],
        [ 1.43517062e-01],
        [-0.00000000e+00]],

       [[ 6.23055816e-01],
        [-1.50443047e-01],
        [ 0.00000000e+00]],

       [[ 1.33328640e+00],
        [-2.75347263e-01],
        [ 0.00000000e+00]],

       [[ 1.83651149e-01],
        [ 3.75336744e-02],
        [-0.00000000e+00]],

       [[ 2.97644231e-02],
        [ 1.16652437e-02],
        [-0.00000000e+00]],

       [[ 3.41825595e-04],
        [ 1.62677676e-03],
        [-0.00000000e+00]],

       [[-1.83736347e-02],
        [ 8.62086378e-03],
        [-0.00000000e+00]],

       [[-1.42827347e-01],
        [ 3.19329835e-02],
        [-0.00000000e+00]],

       [[-4.43072438e-01],
        [ 6.50224611e-02],
        [-0.00000000e+00]],

       [[-7.81834841e-01],
        [ 8.53944644e-02],
        [-0.00000000e+00]],

       [[-6.41837299e-01],
        [ 5.58265485e-02],
        [-0.00000000e+00]],

       [[ 4.27186579e-01],
        [-3.08696218e-02],
        [ 0.00000000e+00]],

       [[ 1.37751818e+00],
        [-8.51379558e-02],
        [ 0.00000000e+00]],

       [[ 1.89106017e-01],
        [-5.18439934e-02],
        [-0.00000000e+00]],

       [[ 3.29094641e-02],
        [-1.73014663e-02],
        [-0.00000000e+00]],

       [[ 6.03454129e-04],
        [-3.85241816e-03],
        [-0.00000000e+00]],

       [[-2.10126825e-02],
        [-1.32252220e-02],
        [-0.00000000e+00]],

       [[-1.47979051e-01],
        [-4.43806946e-02],
        [-0.00000000e+00]],

       [[-4.48529124e-01],
        [-8.82968158e-02],
        [-0.00000000e+00]],

       [[-7.82020152e-01],
        [-1.14577264e-01],
        [-0.00000000e+00]],

       [[-6.30931020e-01],
        [-7.36145154e-02],
        [-0.00000000e+00]],

       [[ 4.43212092e-01],
        [ 4.29626517e-02],
        [ 0.00000000e+00]],

       [[ 1.37574089e+00],
        [ 1.14058658e-01],
        [ 0.00000000e+00]],

       [[ 2.64135420e-01],
        [-1.98809728e-01],
        [-0.00000000e+00]],

       [[ 7.80322850e-02],
        [-1.12630032e-01],
        [-0.00000000e+00]],

       [[ 4.40937467e-03],
        [-7.72829950e-02],
        [-0.00000000e+00]],

       [[-5.90375364e-02],
        [-1.02015816e-01],
        [-0.00000000e+00]],

       [[-2.19588578e-01],
        [-1.80809587e-01],
        [-0.00000000e+00]],

       [[-5.17232537e-01],
        [-2.79549062e-01],
        [-0.00000000e+00]],

       [[-7.65577376e-01],
        [-3.07955086e-01],
        [-0.00000000e+00]],

       [[-4.56210971e-01],
        [-1.46138653e-01],
        [-0.00000000e+00]],

       [[ 6.66388750e-01],
        [ 1.77347437e-01],
        [ 0.00000000e+00]],

       [[ 1.31609750e+00],
        [ 2.99569428e-01],
        [ 0.00000000e+00]],

       [[ 3.72229755e-01],
        [-4.58292633e-01],
        [-0.00000000e+00]],

       [[ 1.53393269e-01],
        [-3.62165451e-01],
        [-0.00000000e+00]],

       [[ 1.10440310e-02],
        [-3.16632390e-01],
        [-0.00000000e+00]],

       [[-1.23404831e-01],
        [-3.48812670e-01],
        [-0.00000000e+00]],

       [[-3.26920062e-01],
        [-4.40325737e-01],
        [-0.00000000e+00]],

       [[-5.80938637e-01],
        [-5.13597906e-01],
        [-0.00000000e+00]],

       [[-6.36403322e-01],
        [-4.18746829e-01],
        [-0.00000000e+00]],

       [[-6.72603324e-02],
        [-3.52435112e-02],
        [-0.00000000e+00]],

       [[ 1.00319839e+00],
        [ 4.36721772e-01],
        [ 0.00000000e+00]],

       [[ 1.03468144e+00],
        [ 3.85244876e-01],
        [ 0.00000000e+00]],

       [[ 4.13713664e-01],
        [-7.07341611e-01],
        [-0.00000000e+00]],

       [[ 2.14601591e-01],
        [-7.03608632e-01],
        [-0.00000000e+00]],

       [[ 1.71813164e-02],
        [-6.84040248e-01],
        [-0.00000000e+00]],

       [[-1.77999839e-01],
        [-6.98678195e-01],
        [-0.00000000e+00]],

       [[-3.81097645e-01],
        [-7.12797701e-01],
        [-0.00000000e+00]],

       [[-4.95380282e-01],
        [-6.08175933e-01],
        [-0.00000000e+00]],

       [[-2.57862478e-01],
        [-2.35615969e-01],
        [-0.00000000e+00]],

       [[ 5.09985209e-01],
        [ 3.71086597e-01],
        [ 0.00000000e+00]],

       [[ 1.18011200e+00],
        [ 7.13409364e-01],
        [ 0.00000000e+00]],

       [[ 3.17028850e-01],
        [ 1.63917944e-01],
        [ 0.00000000e+00]]], dtype=float32)}, 'loss': 0.07746448367834091, 'raw_loss': 0.009564696811139584, 'output_directory': PosixPath('00_basic_data/inferred/model_2023-09-19_04-55-47.048116/test/3'), 'fem_data': <femio.fem_data.FEMData object at 0x7f871a8b3670>}, {'dict_x': {'phi': array([[-0.88234204],
       [-0.3045754 ],
       [ 0.25884932],
       [ 0.5916904 ],
       [ 0.72046834],
       [ 0.700288  ],
       [ 0.5202334 ],
       [ 0.11817078],
       [-0.48837718],
       [-0.5905821 ],
       [ 0.13909094],
       [ 0.6524908 ],
       [ 0.8829879 ],
       [ 0.95008665],
       [ 0.94075054],
       [ 0.8393901 ],
       [ 0.53751177],
       [-0.0611549 ],
       [-0.37346736],
       [ 0.37887406],
       [ 0.8191358 ],
       [ 0.97143996],
       [ 0.9976721 ],
       [ 0.9953066 ],
       [ 0.9474589 ],
       [ 0.728767  ],
       [ 0.18674017],
       [-0.3275487 ],
       [ 0.42378074],
       [ 0.8462669 ],
       [ 0.9819032 ],
       [ 0.99981546],
       [ 0.9988537 ],
       [ 0.96199936],
       [ 0.7614555 ],
       [ 0.23466983],
       [-0.4659182 ],
       [ 0.2827418 ],
       [ 0.7565196 ],
       [ 0.942254  ],
       [ 0.9855552 ],
       [ 0.9802941 ],
       [ 0.9099934 ],
       [ 0.6553089 ],
       [ 0.08580924],
       [-0.74172324],
       [-0.06426831],
       [ 0.4855662 ],
       [ 0.7696764 ],
       [ 0.8672527 ],
       [ 0.85262096],
       [ 0.7119732 ],
       [ 0.3556669 ],
       [-0.26195666],
       [-0.88234204],
       [-0.3045754 ],
       [ 0.25884932],
       [ 0.5916904 ],
       [ 0.72046834],
       [ 0.700288  ],
       [ 0.5202334 ],
       [ 0.11817078],
       [-0.48837718],
       [-0.5905821 ],
       [ 0.13909094],
       [ 0.6524908 ],
       [ 0.8829879 ],
       [ 0.95008665],
       [ 0.94075054],
       [ 0.8393901 ],
       [ 0.53751177],
       [-0.0611549 ],
       [-0.37346736],
       [ 0.37887406],
       [ 0.8191358 ],
       [ 0.97143996],
       [ 0.9976721 ],
       [ 0.9953066 ],
       [ 0.9474589 ],
       [ 0.728767  ],
       [ 0.18674017],
       [-0.3275487 ],
       [ 0.42378074],
       [ 0.8462669 ],
       [ 0.9819032 ],
       [ 0.99981546],
       [ 0.9988537 ],
       [ 0.96199936],
       [ 0.7614555 ],
       [ 0.23466983],
       [-0.4659182 ],
       [ 0.2827418 ],
       [ 0.7565196 ],
       [ 0.942254  ],
       [ 0.9855552 ],
       [ 0.9802941 ],
       [ 0.9099934 ],
       [ 0.6553089 ],
       [ 0.08580924],
       [-0.74172324],
       [-0.06426831],
       [ 0.4855662 ],
       [ 0.7696764 ],
       [ 0.8672527 ],
       [ 0.85262096],
       [ 0.7119732 ],
       [ 0.3556669 ],
       [-0.26195666]], dtype=float32)}, 'dict_y': {'grad': array([[[ 0.5246768 ],
        [ 0.34778893],
        [-0.01656448]],

       [[ 0.5894851 ],
        [ 0.4904825 ],
        [-0.00242198]],

       [[ 0.516879  ],
        [ 0.5641346 ],
        [ 0.00576111]],

       [[ 0.26488963],
        [ 0.38916844],
        [-0.03680622]],

       [[ 0.05163148],
        [ 0.25635916],
        [-0.03003604]],

       [[-0.10023233],
        [ 0.2789629 ],
        [-0.03442502]],

       [[-0.3472535 ],
        [ 0.44856802],
        [-0.02881493]],

       [[-0.59778565],
        [ 0.57412016],
        [ 0.00500605]],

       [[-0.59538734],
        [ 0.4103529 ],
        [-0.03081531]],

       [[ 0.59864235],
        [ 0.27759293],
        [-0.02396504]],

       [[ 0.64864993],
        [ 0.35144845],
        [-0.02346937]],

       [[ 0.3777652 ],
        [ 0.26017442],
        [-0.08234057]],

       [[ 0.13010676],
        [ 0.14389841],
        [-0.0825998 ]],

       [[ 0.01918584],
        [ 0.07740777],
        [-0.0379445 ]],

       [[-0.03855141],
        [ 0.08700276],
        [-0.04403406]],

       [[-0.19344518],
        [ 0.17526403],
        [-0.10529339]],

       [[-0.49375948],
        [ 0.3099136 ],
        [-0.06871117]],

       [[-0.77999604],
        [ 0.3671991 ],
        [-0.01813076]],

       [[ 0.6996637 ],
        [ 0.1318618 ],
        [-0.02182304]],

       [[ 0.64784014],
        [ 0.14668506],
        [-0.03825231]],

       [[ 0.29577792],
        [ 0.08774839],
        [-0.11520296]],

       [[ 0.06493663],
        [ 0.03510309],
        [-0.03579007]],

       [[ 0.0086503 ],
        [ 0.01705435],
        [-0.01225636]],

       [[-0.01779778],
        [ 0.01924445],
        [-0.01573855]],

       [[-0.10397371],
        [ 0.04986248],
        [-0.05134014]],

       [[-0.38195768],
        [ 0.11044016],
        [-0.11408253]],

       [[-0.8432342 ],
        [ 0.174179  ],
        [-0.02782409]],

       [[ 0.7263277 ],
        [-0.04868306],
        [-0.02004946]],

       [[ 0.6435927 ],
        [-0.05111245],
        [-0.03833247]],

       [[ 0.2830265 ],
        [-0.02863671],
        [-0.11335908]],

       [[ 0.05349252],
        [-0.00909712],
        [-0.02800477]],

       [[ 0.00679593],
        [-0.00426098],
        [-0.00678699]],

       [[-0.01442973],
        [-0.00492069],
        [-0.01023936]],

       [[-0.08477257],
        [-0.01353911],
        [-0.04021107]],

       [[-0.36001614],
        [-0.03616736],
        [-0.11710706]],

       [[-0.8516169 ],
        [-0.06211242],
        [-0.03313063]],

       [[ 0.6484425 ],
        [-0.2067261 ],
        [-0.02277997]],

       [[ 0.6659576 ],
        [-0.24672407],
        [-0.02496408]],

       [[ 0.3322754 ],
        [-0.14072318],
        [-0.10681131]],

       [[ 0.08255323],
        [-0.0606405 ],
        [-0.04704536]],

       [[ 0.01096727],
        [-0.02960127],
        [-0.01845148]],

       [[-0.02248492],
        [-0.03323186],
        [-0.02222461]],

       [[-0.13187233],
        [-0.08233945],
        [-0.06718529]],

       [[-0.43448797],
        [-0.1799829 ],
        [-0.09520041]],

       [[-0.8454224 ],
        [-0.27516425],
        [-0.02239221]],

       [[ 0.5410849 ],
        [-0.28306273],
        [-0.01782249]],

       [[ 0.66864175],
        [-0.43958637],
        [ 0.0157504 ]],

       [[ 0.47994155],
        [-0.36565408],
        [-0.01099216]],

       [[ 0.1757879 ],
        [-0.15238483],
        [-0.04019656]],

       [[ 0.02533202],
        [-0.08484193],
        [-0.01442617]],

       [[-0.05110258],
        [-0.09403332],
        [-0.01778995]],

       [[-0.26089343],
        [-0.19497304],
        [-0.04819285]],

       [[-0.596701  ],
        [-0.41669136],
        [-0.00101585]],

       [[-0.76366615],
        [-0.3857489 ],
        [-0.02299137]],

       [[ 0.5246768 ],
        [ 0.3477889 ],
        [ 0.01656447]],

       [[ 0.5894851 ],
        [ 0.4904825 ],
        [ 0.00242195]],

       [[ 0.516879  ],
        [ 0.5641346 ],
        [-0.00576112]],

       [[ 0.26488963],
        [ 0.38916844],
        [ 0.03680621]],

       [[ 0.05163148],
        [ 0.25635916],
        [ 0.03003604]],

       [[-0.10023233],
        [ 0.27896294],
        [ 0.03442502]],

       [[-0.3472535 ],
        [ 0.44856796],
        [ 0.02881494]],

       [[-0.5977857 ],
        [ 0.5741202 ],
        [-0.0050061 ]],

       [[-0.5953873 ],
        [ 0.41035292],
        [ 0.03081527]],

       [[ 0.5986423 ],
        [ 0.27759293],
        [ 0.02396498]],

       [[ 0.64864993],
        [ 0.3514484 ],
        [ 0.02346931]],

       [[ 0.37776515],
        [ 0.26017442],
        [ 0.08234054]],

       [[ 0.13010675],
        [ 0.14389841],
        [ 0.08259977]],

       [[ 0.01918584],
        [ 0.07740777],
        [ 0.0379445 ]],

       [[-0.03855141],
        [ 0.08700276],
        [ 0.04403407]],

       [[-0.19344518],
        [ 0.17526403],
        [ 0.10529339]],

       [[-0.49375954],
        [ 0.30991364],
        [ 0.06871119]],

       [[-0.7799961 ],
        [ 0.3671991 ],
        [ 0.01813077]],

       [[ 0.6996637 ],
        [ 0.1318618 ],
        [ 0.02182298]],

       [[ 0.64784014],
        [ 0.14668506],
        [ 0.03825229]],

       [[ 0.2957779 ],
        [ 0.08774838],
        [ 0.11520296]],

       [[ 0.06493664],
        [ 0.03510309],
        [ 0.03579007]],

       [[ 0.0086503 ],
        [ 0.01705435],
        [ 0.01225635]],

       [[-0.01779779],
        [ 0.01924444],
        [ 0.01573854]],

       [[-0.10397371],
        [ 0.04986247],
        [ 0.05134013]],

       [[-0.38195765],
        [ 0.11044018],
        [ 0.11408254]],

       [[-0.8432342 ],
        [ 0.174179  ],
        [ 0.02782414]],

       [[ 0.7263278 ],
        [-0.04868305],
        [ 0.02004946]],

       [[ 0.6435928 ],
        [-0.05111243],
        [ 0.03833247]],

       [[ 0.2830265 ],
        [-0.0286367 ],
        [ 0.11335907]],

       [[ 0.05349252],
        [-0.00909712],
        [ 0.02800477]],

       [[ 0.00679592],
        [-0.00426098],
        [ 0.00678698]],

       [[-0.01442973],
        [-0.00492069],
        [ 0.01023935]],

       [[-0.08477257],
        [-0.01353911],
        [ 0.04021108]],

       [[-0.36001614],
        [-0.03616736],
        [ 0.11710709]],

       [[-0.85161686],
        [-0.06211242],
        [ 0.03313074]],

       [[ 0.64844257],
        [-0.20672607],
        [ 0.02278001]],

       [[ 0.6659576 ],
        [-0.24672407],
        [ 0.02496421]],

       [[ 0.3322754 ],
        [-0.14072318],
        [ 0.10681136]],

       [[ 0.08255324],
        [-0.0606405 ],
        [ 0.04704537]],

       [[ 0.01096727],
        [-0.02960127],
        [ 0.0184515 ]],

       [[-0.02248492],
        [-0.03323186],
        [ 0.02222461]],

       [[-0.1318723 ],
        [-0.08233945],
        [ 0.06718526]],

       [[-0.43448797],
        [-0.1799829 ],
        [ 0.09520046]],

       [[-0.8454224 ],
        [-0.27516428],
        [ 0.02239222]],

       [[ 0.54108495],
        [-0.28306276],
        [ 0.01782258]],

       [[ 0.66864175],
        [-0.43958637],
        [-0.01575029]],

       [[ 0.47994155],
        [-0.36565408],
        [ 0.01099215]],

       [[ 0.1757879 ],
        [-0.15238483],
        [ 0.04019656]],

       [[ 0.02533202],
        [-0.08484193],
        [ 0.01442616]],

       [[-0.05110258],
        [-0.09403332],
        [ 0.01778995]],

       [[-0.26089346],
        [-0.19497304],
        [ 0.04819283]],

       [[-0.5967011 ],
        [-0.41669136],
        [ 0.00101582]],

       [[-0.7636662 ],
        [-0.38574892],
        [ 0.0229913 ]]], dtype=float32)}, 'original_shapes': array([[108]]), 'data_directory': PosixPath('00_basic_data/preprocessed/test/4'), 'inference_time': 0.0014815330505371094, 'inference_start_datetime': '2023-09-19_04-55-47.058400', 'dict_answer': {'grad': array([[[ 0.4100522 ],
        [ 0.25838104],
        [-0.        ]],

       [[ 0.6394276 ],
        [ 0.5229503 ],
        [-0.        ]],

       [[ 0.4552596 ],
        [ 0.53032357],
        [-0.        ]],

       [[ 0.21873148],
        [ 0.44261372],
        [-0.        ]],

       [[ 0.04946188],
        [ 0.38074976],
        [-0.        ]],

       [[-0.09185717],
        [ 0.39193505],
        [-0.        ]],

       [[-0.2806978 ],
        [ 0.46889   ],
        [-0.        ]],

       [[-0.5249724 ],
        [ 0.5451891 ],
        [-0.        ]],

       [[-0.635867  ],
        [ 0.4791067 ],
        [-0.        ]],

       [[ 0.7031384 ],
        [ 0.28166422],
        [-0.        ]],

       [[ 0.66479784],
        [ 0.34564322],
        [-0.        ]],

       [[ 0.35716727],
        [ 0.2644983 ],
        [-0.        ]],

       [[ 0.127358  ],
        [ 0.16383599],
        [-0.        ]],

       [[ 0.02225191],
        [ 0.10889441],
        [-0.        ]],

       [[-0.04363418],
        [ 0.11835793],
        [-0.        ]],

       [[-0.17864542],
        [ 0.18971132],
        [-0.        ]],

       [[-0.4458099 ],
        [ 0.29432678],
        [-0.        ]],

       [[-0.72731274],
        [ 0.3483827 ],
        [-0.        ]],

       [[ 0.80827725],
        [ 0.13825224],
        [-0.        ]],

       [[ 0.621275  ],
        [ 0.1379251 ],
        [-0.        ]],

       [[ 0.27035093],
        [ 0.085487  ],
        [-0.        ]],

       [[ 0.06438101],
        [ 0.03536403],
        [-0.        ]],

       [[ 0.00486382],
        [ 0.01016335],
        [-0.        ]],

       [[-0.01245227],
        [ 0.01442249],
        [-0.        ]],

       [[-0.10513624],
        [ 0.04767326],
        [-0.        ]],

       [[-0.36201757],
        [ 0.10205416],
        [-0.        ]],

       [[-0.71585876],
        [ 0.14641435],
        [-0.        ]],

       [[ 0.8232562 ],
        [-0.04815254],
        [-0.        ]],

       [[ 0.6080611 ],
        [-0.0461614 ],
        [-0.        ]],

       [[ 0.25110182],
        [-0.02715154],
        [-0.        ]],

       [[ 0.05138417],
        [-0.00965174],
        [-0.        ]],

       [[ 0.0013701 ],
        [-0.000979  ],
        [-0.        ]],

       [[-0.00615965],
        [-0.00243961],
        [-0.        ]],

       [[-0.0897458 ],
        [-0.01391582],
        [-0.        ]],

       [[-0.3426973 ],
        [-0.03303574],
        [-0.        ]],

       [[-0.70832837],
        [-0.04954084],
        [-0.        ]],

       [[ 0.7709712 ],
        [-0.22205994],
        [-0.        ]],

       [[ 0.64393073],
        [-0.2407237 ],
        [-0.        ]],

       [[ 0.3082318 ],
        [-0.16412318],
        [-0.        ]],

       [[ 0.09086598],
        [-0.08404765],
        [-0.        ]],

       [[ 0.01207895],
        [-0.04250194],
        [-0.        ]],

       [[-0.02541925],
        [-0.04957634],
        [-0.        ]],

       [[-0.1362768 ],
        [-0.10405537],
        [-0.        ]],

       [[-0.3993417 ],
        [-0.18956842],
        [-0.        ]],

       [[-0.725989  ],
        [-0.25003836],
        [-0.        ]],

       [[ 0.58440185],
        [-0.3024643 ],
        [-0.        ]],

       [[ 0.6699355 ],
        [-0.45003173],
        [-0.        ]],

       [[ 0.41203085],
        [-0.3942327 ],
        [-0.        ]],

       [[ 0.17322212],
        [-0.28791088],
        [-0.        ]],

       [[ 0.03550963],
        [-0.22452064],
        [-0.        ]],

       [[-0.0672374 ],
        [-0.23564218],
        [-0.        ]],

       [[-0.23079893],
        [-0.31666994],
        [-0.        ]],

       [[-0.49410793],
        [-0.42147672],
        [-0.        ]],

       [[-0.703231  ],
        [-0.4352162 ],
        [-0.        ]],

       [[ 0.4100522 ],
        [ 0.25838104],
        [-0.        ]],

       [[ 0.6394276 ],
        [ 0.5229503 ],
        [-0.        ]],

       [[ 0.4552596 ],
        [ 0.53032357],
        [-0.        ]],

       [[ 0.21873148],
        [ 0.44261372],
        [-0.        ]],

       [[ 0.04946188],
        [ 0.38074976],
        [-0.        ]],

       [[-0.09185717],
        [ 0.39193505],
        [-0.        ]],

       [[-0.2806978 ],
        [ 0.46889   ],
        [-0.        ]],

       [[-0.5249724 ],
        [ 0.5451891 ],
        [-0.        ]],

       [[-0.635867  ],
        [ 0.4791067 ],
        [-0.        ]],

       [[ 0.7031384 ],
        [ 0.28166422],
        [-0.        ]],

       [[ 0.66479784],
        [ 0.34564322],
        [-0.        ]],

       [[ 0.35716727],
        [ 0.2644983 ],
        [-0.        ]],

       [[ 0.127358  ],
        [ 0.16383599],
        [-0.        ]],

       [[ 0.02225191],
        [ 0.10889441],
        [-0.        ]],

       [[-0.04363418],
        [ 0.11835793],
        [-0.        ]],

       [[-0.17864542],
        [ 0.18971132],
        [-0.        ]],

       [[-0.4458099 ],
        [ 0.29432678],
        [-0.        ]],

       [[-0.72731274],
        [ 0.3483827 ],
        [-0.        ]],

       [[ 0.80827725],
        [ 0.13825224],
        [-0.        ]],

       [[ 0.621275  ],
        [ 0.1379251 ],
        [-0.        ]],

       [[ 0.27035093],
        [ 0.085487  ],
        [-0.        ]],

       [[ 0.06438101],
        [ 0.03536403],
        [-0.        ]],

       [[ 0.00486382],
        [ 0.01016335],
        [-0.        ]],

       [[-0.01245227],
        [ 0.01442249],
        [-0.        ]],

       [[-0.10513624],
        [ 0.04767326],
        [-0.        ]],

       [[-0.36201757],
        [ 0.10205416],
        [-0.        ]],

       [[-0.71585876],
        [ 0.14641435],
        [-0.        ]],

       [[ 0.8232562 ],
        [-0.04815254],
        [-0.        ]],

       [[ 0.6080611 ],
        [-0.0461614 ],
        [-0.        ]],

       [[ 0.25110182],
        [-0.02715154],
        [-0.        ]],

       [[ 0.05138417],
        [-0.00965174],
        [-0.        ]],

       [[ 0.0013701 ],
        [-0.000979  ],
        [-0.        ]],

       [[-0.00615965],
        [-0.00243961],
        [-0.        ]],

       [[-0.0897458 ],
        [-0.01391582],
        [-0.        ]],

       [[-0.3426973 ],
        [-0.03303574],
        [-0.        ]],

       [[-0.70832837],
        [-0.04954084],
        [-0.        ]],

       [[ 0.7709712 ],
        [-0.22205994],
        [-0.        ]],

       [[ 0.64393073],
        [-0.2407237 ],
        [-0.        ]],

       [[ 0.3082318 ],
        [-0.16412318],
        [-0.        ]],

       [[ 0.09086598],
        [-0.08404765],
        [-0.        ]],

       [[ 0.01207895],
        [-0.04250194],
        [-0.        ]],

       [[-0.02541925],
        [-0.04957634],
        [-0.        ]],

       [[-0.1362768 ],
        [-0.10405537],
        [-0.        ]],

       [[-0.3993417 ],
        [-0.18956842],
        [-0.        ]],

       [[-0.725989  ],
        [-0.25003836],
        [-0.        ]],

       [[ 0.58440185],
        [-0.3024643 ],
        [-0.        ]],

       [[ 0.6699355 ],
        [-0.45003173],
        [-0.        ]],

       [[ 0.41203085],
        [-0.3942327 ],
        [-0.        ]],

       [[ 0.17322212],
        [-0.28791088],
        [-0.        ]],

       [[ 0.03550963],
        [-0.22452064],
        [-0.        ]],

       [[-0.0672374 ],
        [-0.23564218],
        [-0.        ]],

       [[-0.23079893],
        [-0.31666994],
        [-0.        ]],

       [[-0.49410793],
        [-0.42147672],
        [-0.        ]],

       [[-0.703231  ],
        [-0.4352162 ],
        [-0.        ]]], dtype=float32)}, 'loss': 0.021889416500926018, 'raw_loss': 0.00270273070782423, 'output_directory': PosixPath('00_basic_data/inferred/model_2023-09-19_04-55-47.058400/test/4'), 'fem_data': <femio.fem_data.FEMData object at 0x7f871a3e6460>}]

The predicted data is stored in 00_basic_data/inferred/model_[date]/test ([date] depends on the date when you run this script.)

The structure of the directory is as follows.

00_basic_data/inferred/model_[date]
 ├── log.csv           # Summary file
 ├── settings.yml      # Setting used to prediction (for reproducibility)
 └── test
     ├── 0
     │   ├── grad.npy  # Predicted gradient
     │   ├── mesh.inp  # AVD UCD format file for visualization
     │   └── phi.npy   # Input data
     ├── 1
     │   ├── grad.npy
     │   ├── mesh.inp
     │   └── phi.npy
     .
     .
     .

The predicted result will look as follows (left: ground truth, right: prediction). Looks good!

../_images/res.png

Total running time of the script: ( 0 minutes 55.992 seconds)

Gallery generated by Sphinx-Gallery