siml.preprocessing.siml_scalers.scale_functions package¶
Submodules¶
siml.preprocessing.siml_scalers.scale_functions.identity_scaler module¶
- class siml.preprocessing.siml_scalers.scale_functions.identity_scaler.IdentityScaler(**kwargs)¶
Bases:
TransformerMixin,BaseEstimator,ISimlScalerClass to perform identity conversion (do nothing).
- inverse_transform(data)¶
- is_erroneous() bool¶
- partial_fit(data)¶
- transform(data)¶
- property use_diagonal: bool¶
siml.preprocessing.siml_scalers.scale_functions.interface_scaler module¶
- class siml.preprocessing.siml_scalers.scale_functions.interface_scaler.ISimlScaler¶
Bases:
object- abstract inverse_transform(data: ndarray | coo_matrix | csr_matrix | csc_matrix) ndarray¶
- abstract is_erroneous() bool¶
- abstract partial_fit(data: ndarray | coo_matrix | csr_matrix | csc_matrix) ISimlScaler¶
- abstract transform(data: ndarray | coo_matrix | csr_matrix | csc_matrix) ndarray¶
- abstract property use_diagonal: bool¶
siml.preprocessing.siml_scalers.scale_functions.isoam_scaler module¶
- class siml.preprocessing.siml_scalers.scale_functions.isoam_scaler.IsoAMScaler(other_components=None, **kwargs)¶
Bases:
TransformerMixin,BaseEstimator,ISimlScalerClass to perform scaling for IsoAM based on https://arxiv.org/abs/2005.06316.
- inverse_transform(data)¶
- is_erroneous() bool¶
- partial_fit(data)¶
- transform(data)¶
- property use_diagonal: bool¶
siml.preprocessing.siml_scalers.scale_functions.max_abs_scaler module¶
siml.preprocessing.siml_scalers.scale_functions.min_max_scaler module¶
- class siml.preprocessing.siml_scalers.scale_functions.min_max_scaler.MinMaxScaler(feature_range=Ellipsis, *, copy=True, clip=False, **kwargs)¶
Bases:
MinMaxScaler,ISimlScaler- is_erroneous() bool¶
- property use_diagonal: bool¶
siml.preprocessing.siml_scalers.scale_functions.sparse_standard_scaler module¶
- class siml.preprocessing.siml_scalers.scale_functions.sparse_standard_scaler.SparseStandardScaler(power=1.0, other_components=None, **kwargs)¶
Bases:
TransformerMixin,BaseEstimator,ISimlScalerClass to perform standardization for sparse data.
- inverse_transform(data)¶
- is_erroneous() bool¶
- partial_fit(data)¶
- transform(data)¶
- property use_diagonal: bool¶
- property vars: float¶
siml.preprocessing.siml_scalers.scale_functions.standard_scaler module¶
- class siml.preprocessing.siml_scalers.scale_functions.standard_scaler.StandardScaler(*, copy=True, with_mean=True, with_std=True, **kwargs)¶
Bases:
StandardScaler,ISimlScaler- is_erroneous() bool¶
- property use_diagonal: bool¶
siml.preprocessing.siml_scalers.scale_functions.user_defined_scaler module¶
Module contents¶
- siml.preprocessing.siml_scalers.scale_functions.create_scaler(scaler_name: str, **kwards) ISimlScaler¶