siml.services.inference package¶
Subpackages¶
Submodules¶
siml.services.inference.core_inferer module¶
- class siml.services.inference.core_inferer.CoreInferer(trainer_setting: TrainerSetting, model_setting: ModelSetting, env_setting: ModelEnvironmentSetting, snapshot_file: Path, prepare_batch_function: Callable, loss_function: ILossCalculator, post_processor: PostProcessor, decrypt_key: bytes | None = None)¶
Bases:
object
- run(data_loader: DataLoader) State ¶
siml.services.inference.data_loader_builder module¶
- class siml.services.inference.data_loader_builder.InferenceDataLoaderBuilder(trainer_setting: TrainerSetting, collate_fn: CollateFunctionGenerator, decrypt_key: bytes | None = None)¶
Bases:
object
- create(data_directories: list[pathlib.Path] | None = None, raw_dict_x: dict | None = None, answer_raw_dict_y: dict | None = None, allow_no_data: bool = True) DataLoader ¶
siml.services.inference.engine_builder module¶
- class siml.services.inference.engine_builder.InferenceEngineBuilder(env_setting: ModelEnvironmentSetting, prepare_batch_function: Callable, post_processor: PostProcessor, non_blocking: bool)¶
Bases:
object
siml.services.inference.inner_setting module¶
- class siml.services.inference.inner_setting.InnerInfererSetting(*, main_setting: MainSetting | Any = None, force_model_path: Path | None = None, force_converter_parameters_pkl: Path | None = None, decrypt_key: bytes | None = None)¶
Bases:
BaseModel
- property conversion_setting: ConversionSetting¶
- create_model_env_setting() ModelEnvironmentSetting ¶
- decrypt_key: bytes | None¶
- force_converter_parameters_pkl: Path | None¶
- force_model_path: Path | None¶
- get_converter_parameters_pkl_path() Path ¶
- get_crypt_key() bytes | None ¶
- get_model_name() str ¶
- get_output_directory(date_string: str, *, data_directory: Path | None = None) Path ¶
- get_snapshot_file_path() Path ¶
- get_write_simulation_case_dir(data_directory: Path | None) Path | None ¶
- property inferer_setting: InfererSetting¶
- load_scalers() ScalersComposition | None ¶
- main_setting: MainSetting | Any¶
- property model_setting: ModelSetting¶
- property perform_inverse: bool¶
- skip_fem_data_creation(data_directory: Path | None = None) bool ¶
- property trainer_setting: TrainerSetting¶
siml.services.inference.metrics_builder module¶
- class siml.services.inference.metrics_builder.LossMetrics(loss_function: ILossCalculator)¶
Bases:
Metric
- compute()¶
Computes the metric based on it’s accumulated state.
This is called at the end of each epoch.
- Returns:
the actual quantity of interest.
- Return type:
Any
- Raises:
NotComputableError – raised when the metric cannot be computed.
- reset()¶
Resets the metric to it’s initial state.
This is called at the start of each epoch.
- update(output)¶
Updates the metric’s state using the passed batch output.
This is called once for each batch.
- Parameters:
output – the is the output from the engine’s process function.
- class siml.services.inference.metrics_builder.MetricsBuilder(trainer_setting: TrainerSetting, loss_function: ILossCalculator)¶
Bases:
object
- create() dict[str, ignite.metrics.metric.Metric] ¶
- class siml.services.inference.metrics_builder.PostResultsMetrics¶
Bases:
Metric
- compute()¶
Computes the metric based on it’s accumulated state.
This is called at the end of each epoch.
- Returns:
the actual quantity of interest.
- Return type:
Any
- Raises:
NotComputableError – raised when the metric cannot be computed.
- reset()¶
Resets the metric to it’s initial state.
This is called at the start of each epoch.
- update(output)¶
Updates the metric’s state using the passed batch output.
This is called once for each batch.
- Parameters:
output – the is the output from the engine’s process function.
- class siml.services.inference.metrics_builder.RawLossMetrics(trainer_setting: TrainerSetting, loss_function: ILossCalculator)¶
Bases:
Metric
- compute()¶
Computes the metric based on it’s accumulated state.
This is called at the end of each epoch.
- Returns:
the actual quantity of interest.
- Return type:
Any
- Raises:
NotComputableError – raised when the metric cannot be computed.
- reset()¶
Resets the metric to it’s initial state.
This is called at the start of each epoch.
- update(output)¶
Updates the metric’s state using the passed batch output.
This is called once for each batch.
- Parameters:
output – the is the output from the engine’s process function.
siml.services.inference.record_object module¶
- class siml.services.inference.record_object.PostPredictionRecord(dict_x, dict_y, original_shapes, data_directory, inference_time, inference_start_datetime, dict_answer, loss, raw_loss, output_directory, fem_data)¶
Bases:
NamedTuple
- data_directory: Path¶
Alias for field number 3
- dict_answer: dict[str, numpy.ndarray]¶
Alias for field number 6
- dict_x: dict[str, numpy.ndarray]¶
Alias for field number 0
- dict_y: dict[str, numpy.ndarray]¶
Alias for field number 1
- fem_data: FEMData | None¶
Alias for field number 10
- inference_start_datetime: str¶
Alias for field number 5
- inference_time: float¶
Alias for field number 4
- loss: float¶
Alias for field number 7
- original_shapes: tuple¶
Alias for field number 2
- output_directory: Path¶
Alias for field number 9
- raw_loss: float¶
Alias for field number 8
- class siml.services.inference.record_object.PredictionRecord(dict_x, dict_y, original_shapes, data_directory, inference_time, inference_start_datetime, dict_answer)¶
Bases:
NamedTuple
- data_directory: Path¶
Alias for field number 3
- dict_answer: dict[str, numpy.ndarray] | None¶
Alias for field number 6
- dict_x: dict[str, numpy.ndarray]¶
Alias for field number 0
- dict_y: dict[str, numpy.ndarray]¶
Alias for field number 1
- inference_start_datetime: str¶
Alias for field number 5
- inference_time: float¶
Alias for field number 4
- original_shapes: tuple¶
Alias for field number 2
- class siml.services.inference.record_object.RawPredictionRecord(y_pred, y, x, original_shapes, inference_time, data_directory)¶
Bases:
NamedTuple
- data_directory: Path | None¶
Alias for field number 5
- inference_time: float¶
Alias for field number 4
- original_shapes: tuple¶
Alias for field number 3
- x: ISimlVariables¶
Alias for field number 2
- y: ISimlVariables¶
Alias for field number 1
- y_pred: ISimlVariables¶
Alias for field number 0