graphlow.base package

Submodules

graphlow.base.dict_tensor module

class graphlow.base.dict_tensor.GraphlowDictTensor(dict_tensor, length=None, *, time_series=False, device=-1, dtype=None)[source]

Bases: object

Parameters:
  • dict_tensor (GraphlowDictTensor | dict[KeyType, ArrayDataType])

  • length (int | None)

  • time_series (bool | list[bool])

  • device (torch.device | int)

  • dtype (torch.dtype | type | None)

convert_to_numpy_scipy()[source]
Return type:

dict[str | Enum, ndarray | sparray]

property device: device
property dict_tensor: dict[str | Enum, GraphlowTensor]
property dtype: dtype
extract_by_rel_incidence(rel_incidence)[source]

Extract data GraphlowDictTensor by the relative incidence matrix.

Parameters:

rel_incidence (torch.Tensor) – (n_other_data, n_self_data)-shaped sparse csr tensor.

Returns:

Extracted data.

Return type:

graphlow.GraphlowDictTensor

has_time_series()[source]

Test if it has time series data.

Return type:

bool

items()[source]
Return type:

ItemsView

keys()[source]
Return type:

KeysView

pop(key)[source]
Parameters:

key (str | Enum)

Return type:

GraphlowTensor

send(*, device=None, dtype=None)[source]

Convert features to the specified device and dtype.

Parameters:
  • device (torch.device | int | None)

  • dtype (torch.dtype | type | None)

update(dict_tensor, *, time_series=False, overwrite=False)[source]

Update GraphlowDictTensor with input dict.

Parameters:
  • dict_data (dict | graphlow.GraphlowDictTensor)

  • overwrite (bool) – If True, allow overwriting exsiting items. The default is False.

  • dict_tensor (GraphlowDictTensor | dict[str | Enum, ndarray | sparray | Tensor])

  • time_series (bool | list[bool])

validate_length_if_needed()[source]

Validate graphlow tensors’ lengths.

values()[source]
Return type:

ValuesView

graphlow.base.mesh module

class graphlow.base.mesh.GraphlowMesh(pvmesh, *, dict_point_tensor=None, dict_cell_tensor=None, dict_sparse_tensor=None, device=-1, dtype=None)[source]

Bases: IReadOnlyGraphlowMesh

Parameters:
add_original_index()[source]

Set original indices to points and cells. We do not use vtkOriginalPointIds and vtkOriginalCellIds because they are hidden.

compute_area_vecs()[source]

Compute (n_elements, dims)-shaped area vectors.

Available celltypes are: VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON

Return type:

torch.Tensor[float]

compute_areas(allow_negative_area=False)[source]

Compute (n_elements,)-shaped areas.

Available celltypes are: VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON

Parameters:

allow_negative_area (bool, optional [False])

Return type:

torch.Tensor[float]

compute_cell_adjacency(refresh_cache=False)[source]

Compute (n_cells, n_cells)-shaped sparse adjacency matrix including self-loops. The method is cached.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the adjacency matrix. Otherwise, return the cached result if available.

Returns:

(n_cells, n_cells)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_cell_degree(refresh_cache=False)[source]

Compute (n_cells, n_cells)-shaped degree matrix.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the degree matrix. Otherwise, return the cached result if available.

Returns:

(n_cells, n_cells)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_cell_point_incidence(refresh_cache=False)[source]

Compute (n_cells, n_points)-shaped sparse incidence matrix. The method is cached.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the incidence matrix. Otherwise, return the cached result if available.

Returns:

(n_cells, n_points)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_cell_relative_incidence(other_mesh, minimum_n_sharing=None)[source]

Compute (n_cells_other, n_cells_self)-shaped sparse incidence matrix based on cells.

Parameters:
  • other_mesh (graphlow.GraphlowMesh) – Other mesh object to be

  • minimum_n_sharing (int | None) – Minimum number of sharing points to define connectivity. If not set, it will be the number of points for each cell.

Returns:

(n_cells_other, n_cells_self)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_facet_cell_incidence(refresh_cache=False)[source]

Compute (n_facets, n_cells)-shaped sparse incidence matrix.

Parameters:
  • cache (bool, optional [True]) – If True, the result is cached.

  • refresh_cache (bool)

Returns:

(n_facets, n_cells)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_isoAM(with_moment_matrix=True, consider_volume=False, normal_interp_mode='mean')[source]

Compute (dims, n_points, n_points)-shaped isoAM.

Parameters:
  • with_moment_matrix (bool, optional [True]) – If True, scale the matrix with moment matrices, which are tensor products of relative position tensors.

  • consider_volume (bool, optional [False]) – If True, consider effective volume of each vertex.

  • normal_interp_mode (Literal["mean", "effective"], default: "effective") – The way to interpolate normals. cf. convert_elemental2nodal. - “mean”: averages the values of nodes connected to each element. - “effective”: distributes node information to the connected elements, ensuring consistent volume.

Returns:

  • isoAM (torch.Tensor | None) – (dims, n_points, n_points)-shaped sparse csr tensor

  • Minv (torch.Tensor | None) –

    if with_moment_matrix is True,

    return (n_points, dims, dims)-shaped tensor

    if with_moment_matrix is False,

    return None

Return type:

tuple[Tensor, Tensor | None]

compute_isoAM_with_neumann(normal_weight=10.0, with_moment_matrix=True, consider_volume=False, normal_interp_mode='mean')[source]

Compute (dims, n_points, n_points)-shaped Neumann boundary model IsoAM.

Parameters:
  • normal_weight (float, optional [10.0]) – Weight of the normal vector.

  • with_moment_matrix (bool, optional [True]) – If True, scale the matrix with moment matrices, which are tensor products of relative position tensors.

  • consider_volume (bool, optional [False]) – If True, consider effective volume of each vertex.

  • normal_interp_mode (Literal["mean", "effective"], default: "effective") – The way to interpolate normals. cf. convert_elemental2nodal. - “mean”: averages the values of nodes connected to each element. - “effective”: distributes node information to the connected elements, ensuring consistent volume.

Returns:

  • NIsoAM (torch.Tensor) – (dims, n_points, n_points)-shaped sparse csr tensor

  • weighted_normals (torch.Tensor) – (n_points, dims)-shaped tensor

  • Minv (torch.Tensor | None) –

    if with_moment_matrix is True,

    return (n_points, dims, dims)-shaped tensor

    if with_moment_matrix is False,

    return None

Return type:

tuple[Tensor, Tensor, Tensor | None]

compute_median(data, mode='elemental', n_hop=1)[source]

Perform median filter according with adjacency of the mesh.

Parameters:
  • data (torch.Tensor) – data to be filtered.

  • mode (str, "elemental", or "nodal", default: "elemental") – specify the mode of the data.

  • n_hop (int, optional [1]) – The number of hops to make filtering.

Return type:

torch.Tensor

compute_normalized_cell_adjacency(refresh_cache=False)[source]

Compute (n_cells, n_cells)-shaped normalized adjacency matrix.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the normalized adjacency matrix. Otherwise, return the cached result if available.

Returns:

(n_cells, n_cells)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_normalized_point_adjacency(refresh_cache=False)[source]

Compute (n_points, n_points)-shaped normalized adjacency matrix.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the normalized adjacency matrix. Otherwise, return the cached result if available.

Returns:

(n_points, n_points)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_normals()[source]

Compute (n_elements, dims)-shaped normals.

Available celltypes are: VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON

Return type:

torch.Tensor[float]

compute_point_adjacency(refresh_cache=False)[source]

Compute (n_points, n_points)-shaped sparse adjacency matrix including self-loops. The method is cached.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the adjacency matrix. Otherwise, return the cached result if available.

Returns:

(n_points, n_points)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_point_degree(refresh_cache=False)[source]

Compute (n_points, n_points)-shaped degree matrix.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the degree matrix. Otherwise, return the cached result if available.

Returns:

(n_points, n_points)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_point_relative_incidence(other_mesh)[source]

Compute (n_points_other, n_points_self)-shaped sparse incidence matrix based on points.

Parameters:

other_mesh (graphlow.GraphlowMesh) – Other mesh object to be

Returns:

(n_points_other, n_points_self)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

compute_volumes(allow_negative_volume=True)[source]

Compute (n_elements,)-shaped volumes.

Available celltypes are: VTK_TETRA, VTK_PYRAMID, VTK_WEDGE, VTK_VOXEL, VTK_HEXAHEDRON, VTK_POLYHEDRON

Parameters:

allow_negative_volume (bool, optional [True]) – If True, compute the signed volume.

Return type:

torch.Tensor[float]

convert_elemental2nodal(elemental_data, mode='mean')[source]

Convert elemental data to nodal data.

Parameters:
  • elemental_data (torch.Tensor) – elemental data to convert.

  • mode ("mean", or "conservative", default: "mean") –

    The way to convert. - “mean”: For each node, we consider all the elements that share this node and compute the average of their values.

    This approach provides a smoothed representation at each node.

    • ”conservative”: For each element,

      we consider all the nodes that share this element and distribute the element value to them equally. The values are then summed at each node. This approach ensures that the total quantity (such as mass or volume) is conserved.

Return type:

torch.Tensor

convert_nodal2elemental(nodal_data, mode='mean')[source]

Convert nodal data to elemental data.

Parameters:
  • nodal_data (torch.Tensor) – nodal data to convert.

  • mode ("mean", or "conservative", default: "mean") –

    The way to convert. - “mean”: For each element, we consider all the nodes that share this element and compute the average of their values. This approach provides a smoothed representation at each element. - “conservative”: For each node,

    we consider all the elements that share this node and distribute the node value to them equally. The values are then summed at each element. This approach ensures that the total quantity (such as mass or volume) is conserved.

Return type:

torch.Tensor

copy_features_from_pyvista(*, overwrite=False)[source]

Copy point and cell data from pyvista mesh.

Parameters:

overwrite (bool) – If True, allow overwriting exsiting items. The default is False.

copy_features_to_pyvista(*, overwrite=False)[source]

Copy point and cell tensor data to pyvista mesh.

Parameters:

overwrite (bool) – If True, allow overwriting exsiting items. The default is False.

property device: device
property dict_cell_tensor: GraphlowDictTensor
property dict_point_tensor: GraphlowDictTensor
property dict_sparse_tensor: GraphlowDictTensor
property dtype: dtype
extract_cells(ind, invert=False, add_original_index=True, pass_point_data=False, pass_cell_data=False)[source]

Extract cells by indices.

Parameters:
  • ind (sequence[int]) – Numpy array of cell indices to be extracted.

  • invert (bool, optional [False]) – Invert the selection.

  • add_original_index (bool, optional [True]) – If True, add original index feature to enable relative incidence matrix computation.

  • pass_point_data (bool, optional [False]) – If True, the extracted mesh will inherit the dict_point_tensor from this mesh. This parameter is used, for example, when you want to differentiate the metrics of the extracted mesh based on the point information of this mesh.

  • pass_cell_data (bool, optional [False]) – If True, the extracted mesh will inherit the dict_cell_data from this mesh. This parameter is used, for example, when you want to differentiate the metrics of the extracted mesh based on the cell information of this mesh.

Returns:

Extracted cells mesh.

Return type:

graphlow.GraphlowMesh

extract_facets(add_original_index=True, pass_point_data=False)[source]

Extract all internal/external facets of the volume mesh with (n_faces, n_cells)-shaped sparse signed incidence matrix

Parameters:
  • add_original_index (bool, optional [True]) – If True, add original index feature to enable relative incidence matrix computation.

  • pass_point_data (bool, optional [False]) – If True, the extracted mesh will inherit the dict_point_tensor from this mesh. This parameter is used, for example, when you want to differentiate the metrics of the extracted mesh based on the point information of this mesh.

Returns:

facets – Extracted facets mesh.

Return type:

graphlow.GraphlowMesh

extract_surface(add_original_index=True, pass_point_data=False)[source]

Extract surface.

Parameters:
  • add_original_index (bool, optional [True]) – If True, add original index feature to enable relative incidence matrix computation.

  • pass_point_data (bool, optional [False]) – If True, the extracted mesh will inherit the dict_point_tensor from this mesh. This parameter is used, for example, when you want to differentiate the metrics of the extracted mesh based on the point information of this mesh.

Returns:

Extracted surface mesh.

Return type:

graphlow.GraphlowMesh

property n_cells: int
property n_points: int
property points: Tensor
property pvmesh: UnstructuredGrid
save(file_name, *, binary=True, cast=True, remove_time=True, overwrite_features=False, overwrite_file=False)[source]

Save mesh data. On writing, dict_point_tensor and dict_cell_tensor will be copied to pyvista mesh.

Parameters:
  • file_name (pathlib.Path | str) – File name to be written. If the parent directory does not exist, it will be created.

  • binary (bool) – If True, write binary file. The default is True.

  • cast (bool) – If True, cast mesh if needed. The default is True.

  • remove_time (bool) – If True, remove TimeValue field data.

  • overwrite_features (bool) – If True, allow overwriting features. The default is False.

  • overwrite_file (bool) – If True, allow overwriting the file. The default is False.

send(*, device=None, dtype=None)[source]

Convert features to the specified device and dtype. It does not modify pyvista mesh.

Parameters:
  • device (torch.device | int | None)

  • dtype (torch.dtype | type | None)

update_pyvista_data(dict_tensor, pyvista_dataset, *, overwrite=False)[source]

Update PyVista dataset with the specified GraphlowDictTensor.

Parameters:
  • dict_tensor (graphlow.GraphlowDictTensor) – DataSet to update. Typically dict_point_tensor or dict_cell_tensor.

  • pyvista_dataset (pyvista.DataSetAttributes) – DataSet to be updated. Typically point_data or cell_data.

  • overwrite (bool) – If True, allow overwriting exsiting items. The default is False.

graphlow.base.mesh_interface module

class graphlow.base.mesh_interface.IReadOnlyGraphlowMesh[source]

Bases: object

abstract compute_area_vecs()[source]

Compute (n_elements, dims)-shaped area vectors.

Available celltypes are: VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON

Return type:

torch.Tensor[float]

abstract compute_areas(allow_negative_area=False)[source]

Compute (n_elements,)-shaped areas.

Available celltypes are: VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON

Parameters:

allow_negative_area (bool, optional [False])

Return type:

torch.Tensor[float]

abstract compute_cell_adjacency(refresh_cache=False)[source]

Compute (n_cells, n_cells)-shaped sparse adjacency matrix including self-loops. The method is cached.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the adjacency matrix. Otherwise, return the cached result if available.

Returns:

(n_cells, n_cells)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_cell_degree(refresh_cache=False)[source]

Compute (n_cells, n_cells)-shaped degree matrix.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the degree matrix. Otherwise, return the cached result if available.

Returns:

(n_cells, n_cells)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_cell_point_incidence(refresh_cache=False)[source]

Compute (n_cells, n_points)-shaped sparse incidence matrix. The method is cached.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the incidence matrix. Otherwise, return the cached result if available.

Returns:

(n_cells, n_points)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_cell_relative_incidence(other_mesh, minimum_n_sharing=None)[source]

Compute (n_cells_other, n_cells_self)-shaped sparse incidence matrix based on cells.

Parameters:
  • other_mesh (graphlow.GraphlowMesh) – Other mesh object to be

  • minimum_n_sharing (int | None) – Minimum number of sharing points to define connectivity. If not set, it will be the number of points for each cell.

Returns:

(n_cells_other, n_cells_self)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_facet_cell_incidence(cache=True)[source]

Compute (n_facets, n_cells)-shaped sparse incidence matrix.

Parameters:

cache (bool, optional [True]) – If True, the result is cached.

Returns:

(n_facets, n_cells)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_isoAM(with_moment_matrix=True, consider_volume=False, normal_interp_mode='effective')[source]

Compute (dims, n_points, n_points)-shaped isoAM.

Parameters:
  • with_moment_matrix (bool, optional [True]) – If True, scale the matrix with moment matrices, which are tensor products of relative position tensors.

  • consider_volume (bool, optional [False]) – If True, consider effective volume of each vertex.

  • normal_interp_mode (Literal["mean", "effective"], default: "effective") – The way to interpolate normals. cf. convert_elemental2nodal. - “mean”: averages the values of nodes connected to each element. - “effective”: distributes node information to the connected elements, ensuring consistent volume.

Returns:

  • isoAM (torch.Tensor | None) – (dims, n_points, n_points)-shaped sparse csr tensor

  • Minv (torch.Tensor | None) –

    if with_moment_matrix is True,

    return (n_points, dims, dims)-shaped tensor

    if with_moment_matrix is False,

    return None

Return type:

tuple[Tensor, Tensor | None]

abstract compute_isoAM_with_neumann(normal_weight=10.0, with_moment_matrix=True, consider_volume=False, normal_interp_mode='effective')[source]

Compute (dims, n_points, n_points)-shaped Neumann boundary model IsoAM.

Parameters:
  • normal_weight (float, optional [10.0]) – Weight of the normal vector.

  • with_moment_matrix (bool, optional [True]) – If True, scale the matrix with moment matrices, which are tensor products of relative position tensors.

  • consider_volume (bool, optional [False]) – If True, consider effective volume of each vertex.

  • normal_interp_mode (Literal["mean", "effective"], default: "effective") – The way to interpolate normals. cf. convert_elemental2nodal. - “mean”: averages the values of nodes connected to each element. - “effective”: distributes node information to the connected elements, ensuring consistent volume.

Returns:

  • NIsoAM (torch.Tensor) – (dims, n_points, n_points)-shaped sparse csr tensor

  • weighted_normals (torch.Tensor) – (n_points, dims)-shaped tensor

  • Minv (torch.Tensor | None) –

    if with_moment_matrix is True,

    return (n_points, dims, dims)-shaped tensor

    if with_moment_matrix is False,

    return None

Return type:

tuple[Tensor, Tensor, Tensor | None]

abstract compute_median(data, mode='elemental', n_hop=1)[source]

Perform median filter according with adjacency of the mesh.

Parameters:
  • data (torch.Tensor) – data to be filtered.

  • mode (str, "elemental", or "nodal", default: "elemental") – specify the mode of the data.

  • n_hop (int, optional [1]) – The number of hops to make filtering.

Return type:

torch.Tensor

abstract compute_normalized_cell_adjacency(refresh_cache=False)[source]

Compute (n_cells, n_cells)-shaped normalized adjacency matrix.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the normalized adjacency matrix. Otherwise, return the cached result if available.

Returns:

(n_cells, n_cells)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_normalized_point_adjacency(refresh_cache=False)[source]

Compute (n_points, n_points)-shaped normalized adjacency matrix.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the normalized adjacency matrix. Otherwise, return the cached result if available.

Returns:

(n_points, n_points)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_normals()[source]

Compute (n_elements, dims)-shaped normals.

Available celltypes are: VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON

Return type:

torch.Tensor[float]

abstract compute_point_adjacency(refresh_cache=False)[source]

Compute (n_points, n_points)-shaped sparse adjacency matrix including self-loops. The method is cached.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the adjacency matrix. Otherwise, return the cached result if available.

Returns:

(n_points, n_points)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_point_degree(refresh_cache=False)[source]

Compute (n_points, n_points)-shaped degree matrix.

Parameters:

refresh_cache (bool, optional [False]) – If True, recompute the degree matrix. Otherwise, return the cached result if available.

Returns:

(n_points, n_points)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_point_relative_incidence(other_mesh)[source]

Compute (n_points_other, n_points_self)-shaped sparse incidence matrix based on points.

Parameters:

other_mesh (graphlow.GraphlowMesh) – Other mesh object to be

Returns:

(n_points_other, n_points_self)-shaped sparse csr tensor.

Return type:

torch.Tensor[float]

abstract compute_volumes(allow_negative_volume=True)[source]

Compute (n_elements,)-shaped volumes.

Available celltypes are: VTK_TETRA, VTK_PYRAMID, VTK_WEDGE, VTK_VOXEL, VTK_HEXAHEDRON, VTK_POLYHEDRON

Parameters:

allow_negative_volume (bool, optional [True]) – If True, compute the signed volume.

Return type:

torch.Tensor[float]

abstract convert_elemental2nodal(elemental_data, mode='mean')[source]

Convert elemental data to nodal data.

Parameters:
  • elemental_data (torch.Tensor) – elemental data to convert.

  • mode ("mean", or "conservative", default: "mean") –

    The way to convert. - “mean”: For each node, we consider all the elements that share this node and compute the average of their values.

    This approach provides a smoothed representation at each node.

    • ”conservative”: For each element,

      we consider all the nodes that share this element and distribute the element value to them equally. The values are then summed at each node. This approach ensures that the total quantity (such as mass or volume) is conserved.

Return type:

torch.Tensor

abstract convert_nodal2elemental(nodal_data, mode='mean')[source]

Convert nodal data to elemental data.

Parameters:
  • nodal_data (torch.Tensor) – nodal data to convert.

  • mode ("mean", or "conservative", default: "mean") –

    The way to convert. - “mean”: For each element, we consider all the nodes that share this element and compute the average of their values. This approach provides a smoothed representation at each element. - “conservative”: For each node,

    we consider all the elements that share this node and distribute the node value to them equally. The values are then summed at each element. This approach ensures that the total quantity (such as mass or volume) is conserved.

Return type:

torch.Tensor

abstract property device: device
abstract property dict_cell_tensor: GraphlowDictTensor
abstract property dict_point_tensor: GraphlowDictTensor
abstract property dict_sparse_tensor: GraphlowDictTensor
abstract property dtype: dtype
abstract extract_cells(ind, invert=False, add_original_index=True, pass_point_data=False, pass_cell_data=False)[source]
Parameters:
  • ind (Any)

  • invert (bool)

  • add_original_index (bool)

  • pass_point_data (bool)

  • pass_cell_data (bool)

Return type:

IReadOnlyGraphlowMesh

abstract extract_facets(add_original_index=True, pass_point_data=False)[source]
Parameters:
  • add_original_index (bool)

  • pass_point_data (bool)

Return type:

IReadOnlyGraphlowMesh

abstract extract_surface(add_original_index=True, pass_point_data=False)[source]
Parameters:
  • add_original_index (bool)

  • pass_point_data (bool)

Return type:

IReadOnlyGraphlowMesh

abstract property n_cells: int
abstract property n_points: int
abstract property points: Tensor
abstract property pvmesh: UnstructuredGrid

graphlow.base.tensor module

class graphlow.base.tensor.GraphlowTensor(tensor, *, time_series=False, device=-1, dtype=None)[source]

Bases: object

Parameters:
  • tensor (ArrayDataType)

  • time_series (bool)

  • device (torch.device | int)

  • dtype (torch.dtype | type | None)

convert_to_numpy_scipy()[source]
Return type:

ndarray | sparray

property device: device
property dtype: dtype
send(*, device=None, dtype=None)[source]

Convert tensor to the specified device and dtype.

Parameters:
  • device (torch.device | int)

  • dtype (torch.dtype | type | None)

property shape: Size
property tensor: Tensor
property time_series: bool

graphlow.base.tensor_property module

class graphlow.base.tensor_property.GraphlowTensorProperty(device=-1, dtype=None)[source]

Bases: object

Parameters:
  • device (device | int)

  • dtype (dtype | type | None)

DEFAULT_FLOAT_TYPE = torch.float32
property device: device
property dtype: dtype

Module contents