monolish  0.17.3-dev.23
MONOlithic LInear equation Solvers for Highly-parallel architecture
monolish_tensor_coo.hpp
Go to the documentation of this file.
1 #pragma once
2 #include "monolish_matrix.hpp"
3 #include "monolish_tensor.hpp"
4 #include "monolish_vector.hpp"
5 
6 namespace monolish {
7 template <typename Float> class vector;
8 template <typename TYPE, typename Float> class view1D;
9 namespace tensor {
10 template <typename Float> class tensor_Dense;
11 template <typename Float> class tensor_CRS;
12 template <typename Float> class tensor_COO {
13 private:
17  std::vector<size_t> shape;
18 
22  mutable bool gpu_status = false;
23 
24 public:
29  std::vector<std::vector<size_t>> index;
30 
35  std::shared_ptr<Float> val;
36 
40  size_t val_nnz = 0;
41 
45  size_t alloc_nnz = 0;
46 
50  bool val_create_flag = false;
51 
52  tensor_COO() : shape(), gpu_status(false), index(), val_nnz(0) {
53  val_create_flag = true;
54  }
55 
64  tensor_COO(const std::vector<size_t> &shape_)
65  : shape(shape_), gpu_status(false), index(), val_nnz(0) {
66  val_create_flag = true;
67  }
68 
77  tensor_COO(const std::initializer_list<size_t> &shape_)
78  : shape(shape_), gpu_status(false), index(), val_nnz(0) {
79  val_create_flag = true;
80  }
81 
91 
101  val_create_flag = true;
102  convert(tens);
103  }
104 
114 
124  val_create_flag = true;
125  convert(tens);
126  }
127 
139  tensor_COO(const std::vector<size_t> &shape_,
140  const std::vector<std::vector<size_t>> &index_,
141  const Float *value);
142 
152 
162  tensor_COO(const tensor_COO<Float> &coo, Float value);
163 
172  void print_all(bool force_cpu = false) const;
173 
182  void print_all(const std::string filename) const;
183 
184  // communication
185  // ///////////////////////////////////////////////////////////////////////////
193  void send() const;
194 
202  void recv();
203 
211  void nonfree_recv();
212 
220  void device_free() const;
221 
222  // TODO
230  [[nodiscard]] double get_data_size() const {
231  return get_nnz() * sizeof(Float) / 1.0e+9;
232  }
233 
243  [[nodiscard]] Float at(const std::vector<size_t> &pos) const;
244 
254  [[nodiscard]] Float at(const std::vector<size_t> &pos) {
255  return static_cast<const tensor_COO *>(this)->at(pos);
256  };
257 
268  void set_ptr(const std::vector<size_t> &shape,
269  const std::vector<std::vector<size_t>> &index,
270  const std::vector<Float> &v);
271 
283  void set_ptr(const std::vector<size_t> &shape,
284  const std::vector<std::vector<size_t>> &index,
285  const size_t vsize, const Float *v);
286 
298  void set_ptr(const std::vector<size_t> &shape,
299  const std::vector<std::vector<size_t>> &index,
300  const size_t vsize, const Float v);
301 
309  [[nodiscard]] std::vector<size_t> get_shape() const { return shape; }
310 
318  [[nodiscard]] std::shared_ptr<Float> get_val() { return val; }
319 
327  [[nodiscard]] size_t get_nnz() const { return val_nnz; }
328 
337  void fill(Float value);
338 
346  void set_shape(const std::vector<size_t> &shape) { this->shape = shape; }
347 
352  [[nodiscard]] bool get_device_mem_stat() const { return gpu_status; }
353 
360  [[nodiscard]] const Float *data() const { return val.get(); }
361 
368  [[nodiscard]] Float *data() { return val.get(); }
369 
378  void resize(const size_t N, Float Val = 0) {
379  if (get_device_mem_stat()) {
380  throw std::runtime_error("Error, GPU matrix cant use resize");
381  }
382  if (val_create_flag) {
383  std::shared_ptr<Float> tmp(new Float[N], std::default_delete<Float[]>());
384  size_t copy_size = std::min(val_nnz, N);
385  for (size_t i = 0; i < copy_size; ++i) {
386  tmp.get()[i] = begin()[i];
387  }
388  for (size_t i = copy_size; i < N; ++i) {
389  tmp.get()[i] = Val;
390  }
391  val = tmp;
392  alloc_nnz = N;
393  val_nnz = N;
394 
395  index.resize(N);
396  } else {
397  throw std::runtime_error("Error, not create vector cant use resize");
398  }
399  }
400 
408  [[nodiscard]] std::string type() const { return "tensor_COO"; }
409 
416  [[nodiscard]] const Float *begin() const { return data(); }
417 
424  [[nodiscard]] Float *begin() { return data(); }
425 
432  [[nodiscard]] const Float *end() const { return data() + get_nnz(); }
433 
440  [[nodiscard]] Float *end() { return data() + get_nnz(); }
441 
450  void diag(vector<Float> &vec) const;
451  void diag(view1D<vector<Float>, Float> &vec) const;
452  void diag(view1D<matrix::Dense<Float>, Float> &vec) const;
453  void diag(view1D<tensor::tensor_Dense<Float>, Float> &vec) const;
454 
465  void operator=(const tensor_COO<Float> &tens);
466 
476  [[nodiscard]] Float &operator[](size_t i) {
477  if (get_device_mem_stat()) {
478  throw std::runtime_error("Error, GPU vector cant use operator[]");
479  }
480  return data()[i];
481  }
482 
493  [[nodiscard]] bool equal(const tensor_COO<Float> &tens,
494  bool compare_cpu_and_device = false) const;
495 
507  [[nodiscard]] bool operator==(const tensor_COO<Float> &tens) const;
508 
520  [[nodiscard]] bool operator!=(const tensor_COO<Float> &tens) const;
521 
531  size_t get_index(const std::vector<size_t> &pos) {
532  if (pos.size() != this->shape.size()) {
533  throw std::runtime_error("pos size should be same with the shape");
534  }
535  size_t ind = 0;
536  for (auto i = 0; i < pos.size(); ++i) {
537  ind *= this->shape[i];
538  ind += pos[i];
539  }
540  return ind;
541  }
542 
552  std::vector<size_t> get_index(const size_t pos) {
553  std::vector<size_t> ind(this->shape.size(), 0);
554  auto pos_copy = pos;
555  for (int i = (int)this->shape.size() - 1; i >= 0; --i) {
556  ind[i] = pos_copy % this->shape[i];
557  pos_copy /= this->shape[i];
558  }
559  return ind;
560  }
561 
571  void insert(const std::vector<size_t> &pos, const Float val);
572 
573 private:
574  void _q_sort(int lo, int hi);
575 
576 public:
585  void sort(bool merge);
586 };
587 } // namespace tensor
588 } // namespace monolish
Dense format Matrix.
void convert(const tensor::tensor_Dense< Float > &tens)
Create tensor_COO tensor from tensor_Dense tensor.
void diag(view1D< tensor::tensor_Dense< Float >, Float > &vec) const
bool operator!=(const tensor_COO< Float > &tens) const
Comparing tensors (A != tens)
void resize(const size_t N, Float Val=0)
resize tensor value
void diag(vector< Float > &vec) const
get diag. vector
void sort(bool merge)
sort tensor_COO tensor elements (and merge elements)
std::string type() const
get format name "tensor_COO"
Float * begin()
returns a begin iterator
void _q_sort(int lo, int hi)
tensor_COO(const std::vector< size_t > &shape_)
Initialize tensor_COO tensor.
const Float * end() const
returns a end iterator
Float * end()
returns a end iterator
void set_ptr(const std::vector< size_t > &shape, const std::vector< std::vector< size_t >> &index, const std::vector< Float > &v)
Set tensor_COO array from std::vector.
const Float * data() const
returns a direct pointer to the tensor
const Float * begin() const
returns a begin iterator
bool get_device_mem_stat() const
true: sended, false: not send
size_t get_index(const std::vector< size_t > &pos)
get aligned index from vector index (A[pos] = A[ind[0]][ind[1]]...)
std::vector< size_t > get_index(const size_t pos)
get vector index from aligned index (A[pos[0]][pos[1]]... = A[ind])
void print_all(bool force_cpu=false) const
print all elements to standard I/O
void set_ptr(const std::vector< size_t > &shape, const std::vector< std::vector< size_t >> &index, const size_t vsize, const Float v)
Set tensor_COO array from array.
std::vector< size_t > shape
shape
std::shared_ptr< Float > val
Coodinate format value array (pointer), which stores values of the non-zero elements.
void convert(const tensor::tensor_CRS< Float > &tens)
Create tensor_COO tensor from tensor_CRS tensor.
tensor_COO(const std::vector< size_t > &shape_, const std::vector< std::vector< size_t >> &index_, const Float *value)
Create tensor_COO tensor from n-origin array.
void print_all(const std::string filename) const
print all elements to file
void device_free() const
free data on GPU
std::vector< std::vector< size_t > > index
Coodinate format index, which stores index numbers of the non-zero elements (size nnz)
Float * data()
returns a direct pointer to the tensor
size_t get_nnz() const
get # of non-zeros
bool operator==(const tensor_COO< Float > &tens) const
Comparing tensors (A == tens)
void recv()
recv. data to GPU, and free data on GPU
size_t alloc_nnz
alloced matrix size
void send() const
send data to GPU
std::vector< size_t > get_shape() const
get shape
bool equal(const tensor_COO< Float > &tens, bool compare_cpu_and_device=false) const
Comparing tensors (A == tens)
size_t val_nnz
# of non-zero element
bool val_create_flag
matrix create flag;
std::shared_ptr< Float > get_val()
get shared_ptr of val
Float & operator[](size_t i)
reference to the element at position (v[i])
void operator=(const tensor_COO< Float > &tens)
tensor copy
void set_shape(const std::vector< size_t > &shape)
Set shape.
tensor_COO(const tensor_COO< Float > &coo, Float value)
Initialize tensor_COO tensor of the same size as input tensor.
Float at(const std::vector< size_t > &pos)
get element A[pos[0]][pos[1]]... (onlu CPU)
bool gpu_status
true: sended, false: not send
void set_ptr(const std::vector< size_t > &shape, const std::vector< std::vector< size_t >> &index, const size_t vsize, const Float *v)
Set tensor_COO array from array.
void fill(Float value)
fill tensor elements with a scalar value
void diag(view1D< matrix::Dense< Float >, Float > &vec) const
Float at(const std::vector< size_t > &pos) const
get element A[pos[0]][pos[1]]...
void diag(view1D< vector< Float >, Float > &vec) const
tensor_COO(const tensor::tensor_Dense< Float > &tens)
Create tensor_COO tensor from tensor_Dense tensor.
tensor_COO(const tensor_COO< Float > &coo)
Create tensor_COO tensor from tensor_COO tensor.
void nonfree_recv()
recv. data to GPU (w/o free)
tensor_COO(const std::initializer_list< size_t > &shape_)
Initialize tensor_COO tensor.
void insert(const std::vector< size_t > &pos, const Float val)
insert element A[pos[0]][pos[1]]...
double get_data_size() const
Memory data space required by the matrix.
tensor_COO(const tensor::tensor_CRS< Float > &tens)
Create tensor_COO tensor from tensor_CRS tensor.
void min(const matrix::CRS< double > &A, const matrix::CRS< double > &B, matrix::CRS< double > &C)
Create a new CRS matrix with smallest elements of two matrices (C[0:nnz] = min(A[0:nnz],...
monolish namespaces