monolish  0.17.3-dev.23
MONOlithic LInear equation Solvers for Highly-parallel architecture
monolish_crs.hpp
Go to the documentation of this file.
1 #pragma once
2 #include <exception>
3 #include <memory>
4 #include <omp.h>
5 #include <stdexcept>
6 #include <string>
7 #include <vector>
8 
9 #if USE_SXAT
10 #undef _HAS_CPP17
11 #endif
12 #include <random>
13 #if USE_SXAT
14 #define _HAS_CPP17 1
15 #endif
16 
17 namespace monolish {
18 template <typename Float> class vector;
19 template <typename TYPE, typename Float> class view1D;
20 namespace tensor {
21 template <typename Float> class tensor_Dense;
22 template <typename Float> class tensor_COO;
23 } // namespace tensor
24 namespace matrix {
25 template <typename Float> class Dense;
26 template <typename Float> class COO;
27 
39 template <typename Float> class CRS {
40 private:
44  size_t rowN;
45 
49  size_t colN;
50 
54  // size_t nnz;
55 
59  mutable std::shared_ptr<bool> gpu_status = std::make_shared<bool>(false);
60 
65 
69  size_t first = 0;
70 
71 public:
76  std::shared_ptr<Float> val;
77 
81  size_t val_nnz = 0;
82 
86  size_t alloc_nnz = 0;
87 
91  bool val_create_flag = false;
92 
97  std::vector<int> col_ind;
98 
103  std::vector<int> row_ptr;
104 
105  CRS() { val_create_flag = true; }
106 
117  CRS(const size_t M, const size_t N, const size_t NNZ);
118 
134  CRS(const size_t M, const size_t N, const size_t NNZ, const int *rowptr,
135  const int *colind, const Float *value);
136 
154  CRS(const size_t M, const size_t N, const size_t NNZ, const int *rowptr,
155  const int *colind, const Float *value, const size_t origin);
156 
171  CRS(const size_t M, const size_t N, const std::vector<int> &rowptr,
172  const std::vector<int> &colind, const std::vector<Float> &value);
173 
188  CRS(const size_t M, const size_t N, const std::vector<int> &rowptr,
189  const std::vector<int> &colind, const vector<Float> &value);
190 
198  void convert(COO<Float> &coo);
199 
207  void convert(CRS<Float> &crs);
208 
217  CRS(COO<Float> &coo) {
218  val_create_flag = true;
219  convert(coo);
220  }
221 
234  CRS(const CRS<Float> &mat);
235 
249  CRS(const CRS<Float> &mat, Float value);
250 
265  void set_ptr(const size_t M, const size_t N, const std::vector<int> &rowptr,
266  const std::vector<int> &colind, const std::vector<Float> &value);
267 
282  void set_ptr(const size_t M, const size_t N, const std::vector<int> &rowptr,
283  const std::vector<int> &colind, const size_t vsize,
284  const Float *value);
285 
300  void set_ptr(const size_t M, const size_t N, const std::vector<int> &rowptr,
301  const std::vector<int> &colind, const size_t vsize,
302  const Float value);
303 
312  void print_all(bool force_cpu = false) const;
313 
321  [[nodiscard]] size_t get_row() const { return rowN; }
322 
330  [[nodiscard]] size_t get_col() const { return colN; }
331 
339  [[nodiscard]] std::shared_ptr<Float> get_val() { return val; }
340 
348  [[nodiscard]] size_t get_nnz() const { return val_nnz; }
349 
357  [[nodiscard]] size_t get_alloc_nnz() const { return alloc_nnz; }
358 
365  [[nodiscard]] size_t get_first() const { return first; }
366 
373  [[nodiscard]] size_t get_offset() const { return get_first(); }
374 
382  void set_row(const size_t N) { rowN = N; };
383 
391  void set_col(const size_t M) { colN = M; };
392 
398  void set_first(size_t i) { first = i; }
399 
407  [[nodiscard]] std::string type() const { return "CRS"; }
408 
416  void compute_hash();
417 
423  [[nodiscard]] size_t get_hash() const { return structure_hash; }
424 
425  // communication
426  // ///////////////////////////////////////////////////////////////////////////
434  void send() const;
435 
443  void recv();
444 
452  void nonfree_recv();
453 
461  void device_free() const;
462 
467  [[nodiscard]] bool get_device_mem_stat() const { return *gpu_status; }
468 
473  [[nodiscard]] std::shared_ptr<bool> get_gpu_status() const {
474  return gpu_status;
475  }
476 
484  ~CRS() {
485  if (val_create_flag) {
486  if (get_device_mem_stat()) {
487  device_free();
488  }
489  }
490  }
491 
498  [[nodiscard]] const Float *data() const { return val.get(); }
499 
506  [[nodiscard]] Float *data() { return val.get(); }
507 
516  void resize(size_t N, Float Val = 0) {
517  if (first + N < alloc_nnz) {
518  for (size_t i = val_nnz; i < N; ++i) {
519  begin()[i] = Val;
520  }
521  val_nnz = N;
522  return;
523  }
524  if (get_device_mem_stat()) {
525  throw std::runtime_error("Error, GPU matrix cant use resize");
526  }
527  if (val_create_flag) {
528  std::shared_ptr<Float> tmp(new Float[N], std::default_delete<Float[]>());
529  size_t copy_size = std::min(val_nnz, N);
530  for (size_t i = 0; i < copy_size; ++i) {
531  tmp.get()[i] = data()[i];
532  }
533  for (size_t i = copy_size; i < N; ++i) {
534  tmp.get()[i] = Val;
535  }
536  val = tmp;
537  alloc_nnz = N;
538  val_nnz = N;
539  first = 0;
540  } else {
541  throw std::runtime_error("Error, not create vector cant use resize");
542  }
543  }
544 
551  [[nodiscard]] const Float *begin() const { return data() + get_offset(); }
552 
559  [[nodiscard]] Float *begin() { return data() + get_offset(); }
560 
567  [[nodiscard]] const Float *end() const {
568  return data() + get_offset() + get_nnz();
569  }
570 
577  [[nodiscard]] Float *end() { return data() + get_offset() + get_nnz(); }
578 
580 
588  void diag(vector<Float> &vec) const;
589  void diag(view1D<vector<Float>, Float> &vec) const;
590  void diag(view1D<matrix::Dense<Float>, Float> &vec) const;
591  void diag(view1D<tensor::tensor_Dense<Float>, Float> &vec) const;
592 
602  void row(const size_t r, vector<Float> &vec) const;
603  void row(const size_t r, view1D<vector<Float>, Float> &vec) const;
604  void row(const size_t r, view1D<matrix::Dense<Float>, Float> &vec) const;
605  void row(const size_t r,
606  view1D<tensor::tensor_Dense<Float>, Float> &vec) const;
607 
617  void col(const size_t c, vector<Float> &vec) const;
618  void col(const size_t c, view1D<vector<Float>, Float> &vec) const;
619  void col(const size_t c, view1D<matrix::Dense<Float>, Float> &vec) const;
620  void col(const size_t c,
621  view1D<tensor::tensor_Dense<Float>, Float> &vec) const;
622 
624 
636  void diag_add(const Float alpha);
637 
650  void diag_sub(const Float alpha);
651 
664  void diag_mul(const Float alpha);
665 
678  void diag_div(const Float alpha);
679 
692  void diag_add(const vector<Float> &vec);
693  void diag_add(const view1D<vector<Float>, Float> &vec);
694  void diag_add(const view1D<matrix::Dense<Float>, Float> &vec);
695  void diag_add(const view1D<tensor::tensor_Dense<Float>, Float> &vec);
696 
709  void diag_sub(const vector<Float> &vec);
710  void diag_sub(const view1D<vector<Float>, Float> &vec);
711  void diag_sub(const view1D<matrix::Dense<Float>, Float> &vec);
712  void diag_sub(const view1D<tensor::tensor_Dense<Float>, Float> &vec);
713 
726  void diag_mul(const vector<Float> &vec);
727  void diag_mul(const view1D<vector<Float>, Float> &vec);
728  void diag_mul(const view1D<matrix::Dense<Float>, Float> &vec);
729  void diag_mul(const view1D<tensor::tensor_Dense<Float>, Float> &vec);
730 
743  void diag_div(const vector<Float> &vec);
744  void diag_div(const view1D<vector<Float>, Float> &vec);
745  void diag_div(const view1D<matrix::Dense<Float>, Float> &vec);
746  void diag_div(const view1D<tensor::tensor_Dense<Float>, Float> &vec);
747 
749 
758  void transpose();
759 
768  void transpose(const CRS &B);
769 
770  /*
771  * @brief Memory data space required by the matrix
772  * @note
773  * - # of computation: 3
774  * - Multi-threading: false
775  * - GPU acceleration: false
776  **/
777  [[nodiscard]] double get_data_size() const {
778  return (get_nnz() * sizeof(Float) + (get_row() + 1) * sizeof(int) +
779  get_nnz() * sizeof(int)) /
780  1.0e+9;
781  }
782 
791  void fill(Float value);
792 
803  void operator=(const CRS<Float> &mat);
804 
814  [[nodiscard]] Float &operator[](size_t i) {
815  if (get_device_mem_stat()) {
816  throw std::runtime_error("Error, GPU vector cant use operator[]");
817  }
818  return data()[first + i];
819  }
820 
831  [[nodiscard]] bool equal(const CRS<Float> &mat,
832  bool compare_cpu_and_device = false) const;
833 
845  [[nodiscard]] bool operator==(const CRS<Float> &mat) const;
846 
858  [[nodiscard]] bool operator!=(const CRS<Float> &mat) const;
859 };
862 } // namespace matrix
863 } // namespace monolish
Coodinate (COO) format Matrix (need to sort)
Compressed Row Storage (CRS) format Matrix.
void diag_mul(const view1D< tensor::tensor_Dense< Float >, Float > &vec)
std::shared_ptr< bool > gpu_status
# of non-zero element
bool equal(const CRS< Float > &mat, bool compare_cpu_and_device=false) const
Comparing matrices (A == mat)
size_t rowN
# of row
std::shared_ptr< bool > get_gpu_status() const
gpu status shared pointer
void set_col(const size_t M)
Set column number.
CRS(const CRS< Float > &mat)
Create CRS matrix from CRS matrix.
const Float * data() const
returns a direct pointer to the matrix
Float * data()
returns a direct pointer to the matrix
void diag_mul(const Float alpha)
Scalar and diag. vector of CRS format matrix mul.
size_t get_col() const
get # of col
CRS(const size_t M, const size_t N, const size_t NNZ)
declare CRS matrix
void diag(vector< Float > &vec) const
get diag. vector
void diag_mul(const view1D< matrix::Dense< Float >, Float > &vec)
CRS(const size_t M, const size_t N, const size_t NNZ, const int *rowptr, const int *colind, const Float *value, const size_t origin)
Create CRS matrix from array, also compute the hash.
Float * end()
returns a end iterator
size_t first
first position of data array
size_t val_nnz
# of non-zero element (M * N)
CRS(COO< Float > &coo)
Create CRS matrix from COO matrix, also compute the hash.
void diag_mul(const vector< Float > &vec)
Vector and diag. vector of CRS format matrix mul.
void set_ptr(const size_t M, const size_t N, const std::vector< int > &rowptr, const std::vector< int > &colind, const size_t vsize, const Float *value)
Set CRS array from std::vector.
double get_data_size() const
void diag_sub(const Float alpha)
Scalar and diag. vector of CRS format matrix sub.
void compute_hash()
compute index array hash (to compare structure)
void diag_sub(const view1D< vector< Float >, Float > &vec)
CRS(const size_t M, const size_t N, const size_t NNZ, const int *rowptr, const int *colind, const Float *value)
Create CRS matrix from array, also compute the hash.
void row(const size_t r, view1D< matrix::Dense< Float >, Float > &vec) const
size_t alloc_nnz
alloced matrix size
bool operator!=(const CRS< Float > &mat) const
Comparing matrices (A != mat)
void diag_add(const view1D< vector< Float >, Float > &vec)
void fill(Float value)
fill matrix elements with a scalar value
size_t get_alloc_nnz() const
get # of alloced non-zeros
void row(const size_t r, view1D< tensor::tensor_Dense< Float >, Float > &vec) const
bool val_create_flag
matrix create flag;
size_t get_hash() const
get index array hash (to compare structure)
void diag_add(const view1D< matrix::Dense< Float >, Float > &vec)
bool operator==(const CRS< Float > &mat) const
Comparing matrices (A == mat)
void set_row(const size_t N)
Set row number.
void send() const
send data to GPU
size_t get_first() const
get first position
void convert(CRS< Float > &crs)
Convert CRS matrix from COO matrix.
void print_all(bool force_cpu=false) const
print all elements to standard I/O
void resize(size_t N, Float Val=0)
resize matrix value
void col(const size_t c, vector< Float > &vec) const
get column vector
void diag_sub(const vector< Float > &vec)
Vector and diag. vector of CRS format matrix sub.
void operator=(const CRS< Float > &mat)
matrix copy
void transpose(const CRS &B)
create transposed matrix from CRS format matrix (B = A^T)
CRS(const CRS< Float > &mat, Float value)
Create CRS matrix of the same size as input matrix.
std::shared_ptr< Float > val
CRS format value (pointer), which stores values of the non-zero elements.
size_t get_offset() const
get first position (same as get_first())
size_t get_nnz() const
get # of non-zeros
size_t structure_hash
hash, created from row_ptr and col_ind
void col(const size_t c, view1D< vector< Float >, Float > &vec) const
void diag_div(const view1D< tensor::tensor_Dense< Float >, Float > &vec)
const Float * end() const
returns a end iterator
void diag(view1D< vector< Float >, Float > &vec) const
void diag(view1D< tensor::tensor_Dense< Float >, Float > &vec) const
void diag(view1D< matrix::Dense< Float >, Float > &vec) const
std::shared_ptr< Float > get_val()
get shared_ptr of val
size_t get_row() const
get # of row
std::vector< int > col_ind
CRS format column index, which stores column numbers of the non-zero elements (size nnz)
void diag_sub(const view1D< tensor::tensor_Dense< Float >, Float > &vec)
~CRS()
destructor of CRS matrix, free GPU memory
const Float * begin() const
returns a begin iterator
std::string type() const
get format name "CRS"
void set_first(size_t i)
change first position
void diag_add(const view1D< tensor::tensor_Dense< Float >, Float > &vec)
void nonfree_recv()
recv. data to GPU (w/o free)
void convert(COO< Float > &coo)
Convert CRS matrix from COO matrix, also compute the hash.
void diag_add(const Float alpha)
Scalar and diag. vector of CRS format matrix add.
void col(const size_t c, view1D< tensor::tensor_Dense< Float >, Float > &vec) const
void transpose()
get transposed matrix (A^T)
void device_free() const
free data on GPU
void row(const size_t r, view1D< vector< Float >, Float > &vec) const
void diag_add(const vector< Float > &vec)
Vector and diag. vector of CRS format matrix add.
void diag_div(const view1D< matrix::Dense< Float >, Float > &vec)
void diag_div(const Float alpha)
Scalar and diag. vector of CRS format matrix div.
void diag_mul(const view1D< vector< Float >, Float > &vec)
Float * begin()
returns a begin iterator
void recv()
recv. data to GPU, and free data on GPU
Float & operator[](size_t i)
reference to the element at position (v[i])
void row(const size_t r, vector< Float > &vec) const
get row vector
void diag_div(const vector< Float > &vec)
Vector and diag. vector of CRS format matrix div.
size_t colN
# of col
void set_ptr(const size_t M, const size_t N, const std::vector< int > &rowptr, const std::vector< int > &colind, const std::vector< Float > &value)
Set CRS array from std::vector.
void col(const size_t c, view1D< matrix::Dense< Float >, Float > &vec) const
std::vector< int > row_ptr
CRS format row pointer, which stores the starting points of the rows of the arrays value and col_ind ...
CRS(const size_t M, const size_t N, const std::vector< int > &rowptr, const std::vector< int > &colind, const std::vector< Float > &value)
Create CRS matrix from std::vector, also compute the hash.
bool get_device_mem_stat() const
true: sended, false: not send
void diag_sub(const view1D< matrix::Dense< Float >, Float > &vec)
CRS(const size_t M, const size_t N, const std::vector< int > &rowptr, const std::vector< int > &colind, const vector< Float > &value)
Create CRS matrix from std::vector, also compute the hash.
void diag_div(const view1D< vector< Float >, Float > &vec)
void set_ptr(const size_t M, const size_t N, const std::vector< int > &rowptr, const std::vector< int > &colind, const size_t vsize, const Float value)
Set CRS array from std::vector.
Dense format Matrix.
void min(const matrix::CRS< double > &A, const matrix::CRS< double > &B, matrix::CRS< double > &C)
Create a new CRS matrix with smallest elements of two matrices (C[0:nnz] = min(A[0:nnz],...
monolish namespaces