phlower.settings.PhlowerPredictorSetting¶
- class phlower.settings.PhlowerPredictorSetting(selection_mode, device='cpu', log_file_name='log', saved_setting_filename='model', batch_size=1, num_workers=1, non_blocking=False, random_seed=0)[source]¶
Bases:
object
Methods
__init__
(*args, **kwargs)check_valid_selection_mode
(name)Attributes
batch size.
device name.
name of log file.
non_blocking
the number of cores.
random seed.
file name of pretrained model setting.
Define method to select checkpoint file.
- Parameters:
selection_mode (str)
device (str)
log_file_name (str)
saved_setting_filename (str)
batch_size (int)
num_workers (int)
non_blocking (bool)
random_seed (int)
- batch_size: int = 1¶
batch size. Defaults to 1
- device: str = 'cpu'¶
device name. Defaults to cpu
- log_file_name: str = 'log'¶
name of log file. Defaults to “log”
- num_workers: int = 1¶
the number of cores. Defaults to 1.
- random_seed: int = 0¶
random seed. Defaults to 0
- saved_setting_filename: str = 'model'¶
file name of pretrained model setting. Defaults to “model”
- selection_mode: str¶
Define method to select checkpoint file. Choose from “best”, “latest”, “train_best”, “specified”