phlower.settings.PhlowerPredictorSetting

class phlower.settings.PhlowerPredictorSetting(*, selection_mode, device='cpu', log_file_name='log', saved_setting_filename='model', batch_size=1, num_workers=0, non_blocking=False, random_seed=0, target_epoch=None, inverse_scaling=False)[source]

Bases: BaseModel

Methods

check_valid_selection_mode(name)

check_valid_target_epoch()

Attributes

model_computed_fields

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

selection_mode

Define method to select checkpoint file.

device

device name.

log_file_name

name of log file.

saved_setting_filename

file name of pretrained model setting.

batch_size

batch size.

num_workers

the number of cores.

non_blocking

random_seed

random seed.

target_epoch

target_epoch specifies the number of snapshot.

inverse_scaling

target_epoch specifies the number of snapshot.

Parameters:
  • selection_mode (str)

  • device (str)

  • log_file_name (str)

  • saved_setting_filename (str)

  • batch_size (int)

  • num_workers (int)

  • non_blocking (bool)

  • random_seed (int)

  • target_epoch (int | None)

  • inverse_scaling (bool)

batch_size: int

batch size. Defaults to 1

device: str

device name. Defaults to cpu

inverse_scaling: bool

target_epoch specifies the number of snapshot. Defaults to None.

log_file_name: str

name of log file. Defaults to “log”

model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'frozen': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

num_workers: int

the number of cores. Defaults to 0

random_seed: int

random seed. Defaults to 0

saved_setting_filename: str

file name of pretrained model setting. Defaults to “model”

selection_mode: str

Define method to select checkpoint file. Choose from “best”, “latest”, “train_best”, “specified”

target_epoch: int | None

target_epoch specifies the number of snapshot. Defaults to None.