phlower.settings.PhlowerPredictorSetting

class phlower.settings.PhlowerPredictorSetting(selection_mode, device='cpu', log_file_name='log', saved_setting_filename='model', batch_size=1, num_workers=1, non_blocking=False, random_seed=0)[source]

Bases: object

Methods

__init__(*args, **kwargs)

check_valid_selection_mode(name)

Attributes

batch_size

batch size.

device

device name.

log_file_name

name of log file.

non_blocking

num_workers

the number of cores.

random_seed

random seed.

saved_setting_filename

file name of pretrained model setting.

selection_mode

Define method to select checkpoint file.

Parameters:
  • selection_mode (str)

  • device (str)

  • log_file_name (str)

  • saved_setting_filename (str)

  • batch_size (int)

  • num_workers (int)

  • non_blocking (bool)

  • random_seed (int)

batch_size: int = 1

batch size. Defaults to 1

device: str = 'cpu'

device name. Defaults to cpu

log_file_name: str = 'log'

name of log file. Defaults to “log”

num_workers: int = 1

the number of cores. Defaults to 1.

random_seed: int = 0

random seed. Defaults to 0

saved_setting_filename: str = 'model'

file name of pretrained model setting. Defaults to “model”

selection_mode: str

Define method to select checkpoint file. Choose from “best”, “latest”, “train_best”, “specified”