phlower.nn.TCN¶
- class phlower.nn.TCN(nodes, kernel_sizes, dilations, activations, bias=True, dropouts=None)[source]¶
Bases:
Module
,IPhlowerCoreModule
Temporal Convolutional Networks
Ref. https://arxiv.org/abs/1803.01271
- Parameters:
nodes (list[int]) – List of feature dimension sizes (The last value of tensor shape).
kernel_sizes (list[int]) – List of kernel sizes.
dilations (list[int]) – List of dilations.
activations (list[str]) – List of activation functions.
bias (bool) – Whether to use bias.
dropouts (list[float] | None (optional)) – List of dropout rates.
Examples
>>> tcn = TCN( ... nodes=[10, 20, 30], ... kernel_sizes=[3, 3, 3], ... dilations=[1, 2, 4], ... activations=["relu", "relu", "relu"], ... bias=True, ... dropouts=[0.1, 0.1, 0.1] ... ) >>> tcn(data)
Methods
forward
(data, *[, field_data])forward function which overload torch.nn.Module
from_setting
(setting)Create TCN from TCNSetting instance
Return neural network name
Attributes
T_destination
call_super_init
dump_patches
training
- forward(data, *, field_data=None, **kwards)[source]¶
forward function which overload torch.nn.Module
- Parameters:
data (IPhlowerTensorCollections) – IPhlowerTensorCollections data which receives from predecessors
field_data (ISimulationField | None) – ISimulationField | None Constant information through training or prediction
- Returns:
Tensor object
- Return type: