phlower.settings.PhlowerTrainerSetting¶
- class phlower.settings.PhlowerTrainerSetting(*, loss_setting, optimizer_setting=<factory>, scheduler_setting=<factory>, n_epoch=10, random_seed=0, batch_size=1, num_workers=0, device='cpu', evaluation_for_training=True, non_blocking=False)[source]¶
Bases:
BaseModel
Methods
Attributes
model_computed_fields
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extra
Get extra fields set during validation.
model_fields
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
setting for loss function
setting for optimizer
setting for schedulers
the number of epochs.
random seed.
batch size.
the number of cores.
device name.
If True, evaluation for training dataset is performed
non_blocking
- Parameters:
loss_setting (LossSetting)
optimizer_setting (OptimizerSetting)
scheduler_setting (list[SchedulerSetting])
n_epoch (int)
random_seed (int)
batch_size (int)
num_workers (int)
device (str)
evaluation_for_training (bool)
non_blocking (bool)
- batch_size: int¶
batch size. Defaults to 1
- device: str¶
device name. Defaults to cpu
- evaluation_for_training: bool¶
If True, evaluation for training dataset is performed
- loss_setting: LossSetting¶
setting for loss function
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'frozen': True}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- n_epoch: int¶
the number of epochs. Defaults to 10.
- num_workers: int¶
the number of cores. Defaults to 0.
- optimizer_setting: OptimizerSetting¶
setting for optimizer
- random_seed: int¶
random seed. Defaults to 0
- scheduler_setting: list[SchedulerSetting]¶
setting for schedulers