phlower.nn.MLP¶
- class phlower.nn.MLP(nodes, activations=None, dropouts=None, bias=True)[source]¶
Bases:
IPhlowerCoreModule
,Module
Multi Layer Perceptron
- Parameters:
nodes (list[int]) – List of feature dimension sizes (The last value of tensor shape).
activations (list[str] | None (optional)) – List of activation functions to apply to the output. Defaults to None.
dropouts (list[float] | None (optional)) – List of dropout rates to apply to the output. Defaults to None.
bias (bool) – Whether to use bias.
Examples
>>> mlp = MLP( ... nodes=[10, 20, 30], ... activations=["relu", "relu", "relu"], ... dropouts=[0.1, 0.1, 0.1], ... bias=True ... ) >>> mlp(data)
Methods
forward
(data, *[, field_data])forward function which overloads torch.nn.Module
from_setting
(setting)Generate MLP from setting object
Return neural network name
Attributes
T_destination
call_super_init
dump_patches
training
- forward(data, *, field_data=None, **kwards)[source]¶
forward function which overloads torch.nn.Module
- Parameters:
data (IPhlowerTensorCollections) – IPhlowerTensorCollections data which receives from predecessors
field_data (ISimulationField | None) – ISimulationField | None Constant information through training or prediction
- Returns:
Tensor object
- Return type: