phlower.nn.LayerNorm¶
- class phlower.nn.LayerNorm(nodes, eps=1e-05, elementwise_affine=True, bias=True)[source]¶
Bases:
IPhlowerCoreModule
,Module
LayerNorm is a neural network module that applies Layer Normalization on the input tensor.
- Parameters:
nodes (list[int]) – List of feature dimension sizes (The last value of tensor shape).
eps (float) – A value added to the denominator for numerical stability.
elementwise_affine (bool) – Whether to learn additional affine parameters.
bias (bool) – Whether to learn an additive bias if elementwise_affine is True.
Examples
>>> layer_norm = LayerNorm() >>> layer_norm(data)
Methods
forward
(data, *[, field_data])forward function which overloads torch.nn.Module
from_setting
(setting)Generate LayerNorm from setting object
Return neural network name
Attributes
T_destination
call_super_init
dump_patches
training
- forward(data, *, field_data=None, **kwards)[source]¶
forward function which overloads torch.nn.Module
- Parameters:
data (IPhlowerTensorCollections) – IPhlowerTensorCollections data which receives from predecessors
field_data (ISimulationField | None) – ISimulationField | None Constant information through training or prediction
- Returns:
Tensor object
- Return type: